124 research outputs found

    Draft genome sequence of the mucin degrader clostridium tertium wc0709

    Get PDF
    The draft genome sequence of Clostridium tertium WC0709, a gut bacterium able to use mucin in pure culture as the sole carbon and nitrogen source, is presented here. The genome sequence of C. tertium will provide valuable references for comparative genome analysis and for studying the relationship with the host

    Identification of mucin degraders of the human gut microbiota

    Get PDF
    Mucins are large glycoproteins consisting of approximately 80% of hetero-oligosaccharides. Gut mucin degraders of healthy subjects were investigated, through a culture dependent and independent approach. The faeces of five healthy adults were subjected to three steps of anaerobic enrichment in a medium with sole mucins as carbon and nitrogen sources. The bacterial community was compared before and after the enrichment by 16S rRNA gene profiling. Bacteria capable of fermenting sugars, such as Anaerotruncus, Holdemania, and Enterococcaceae likely took advantage of the carbohydrate chains. Escherichia coli and Enterobacteriaceae, Peptococcales, the Coriobacteriale Eggerthella, and a variety of Clostridia such as Oscillospiraceae, Anaerotruncus, and Lachnoclostridium, significantly increased and likely participated to the degradation of the protein backbone of mucin. The affinity of E. coli and Enterobacteriaceae for mucin may facilitate the access to the gut mucosa, promoting gut barrier damage and triggering systemic inflammatory responses. Only three species of strict anaerobes able to grow on mucin were isolated from the enrichments of five different microbiota: Clostridium disporicum, Clostridium tertium, and Paraclostridium benzoelyticum. The limited number of species isolated confirms that in the gut the degradation of these glycoproteins results from cooperation and cross-feeding among several species exhibiting different metabolic capabilities

    Last-male sperm precedence in Rhynchophorus ferrugineus (Olivier): observations in laboratory mating experiments with irradiated males

    Get PDF
    The Red PalmWeevil (RPW)Rhynchophorus ferrugineus(Olivier 1790) is an invasive pest from southeastern Asia and Melanesia that in the last 30 years has spread widely in the Middle East and Mediterranean Basin. Its stem-boring larvae cause great damage to several palm species of the Arecaceae family, many of which are economically important for agricultural and ornamental purposes. Therefore, great attention has recently been focused in studying this species to identify sustainable and effective eradication strategies, such as sterile insect technique (SIT). The rapid spread of RPW is associated with its high reproductive success. To evaluate the suitability of a SIT strategy, particular physiological and behavioral aspects of RPW reproduction, such as the presence of polyandry and post-copulatory sperm selection mechanisms, were investigated. To determine paternity of progeny from multiply mated females, double-crossing experiments were carried out confining individual females with either a wild-type male or a γ-irradiated male (Co-60). Fecundity and fertility of females were scored to evaluate post-copulatory sperm selection. Results showed that progeny were almost exclusively produced by the sperm of the second male, suggesting that a last-male sperm precedence is expressed at high levels in this species, and providing interesting insights for an area-wide RPW management strategy such as the SIT

    Effects of gamma irradiation on the fecundity, fertility, and longevity of the invasive stink bug pest Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae)

    Get PDF
    The bagrada bug, Bagrada hilaris, is an invasive insect pest in the family Brassicaceae that causes economically important damage to crops. It was originally present in Asia, the Middle East, and Africa, and was reported as invasive in the southwestern part of the US, in Chile, and on a few islands in the Mediterranean Basin. In its native range, B. hilaris is controlled by several egg parasitoid species that are under consideration as potential biological control agents. This research evaluated the impact of gamma irradiation on life history parameters, e.g., the fecundity, fertility, and longevity of B. hilaris, as a critical step towards assessing the feasibility of using the sterile insect technique against this recent invasive pest. Newly emerged adults of a laboratory colony originally collected from the island of Pantelleria (Italy) were gamma-irradiated. Life history parameters were evaluated at nine different doses, ranging from 16 Gy to 140 Gy. The minimal dose to approach full sterility was 100 Gy. Irradiation up to a maximum of 140 Gy apparently did not negatively impact the longevity of the adults. Even if both genders are sensitive to irradiation, the decline in fecundity for irradiated females could be exploited to release irradiated males safely to apply the SIT in combination with classical biological control. The data presented here allow us to consider, for the first time, the irradiation of bagrada adults as a suitable and feasible technique that could contribute to guaranteeing a safe approach to control this important pest species in agro-ecosystems. More research is warranted on the competitive fitness of irradiated males to better understand mating behavior as well as elucidate the possible mechanisms of sperm selection by polyandric B. hilaris female

    Antibiotic resistance, virulence factors, phenotyping, and genotyping of non\u2013escherichia coli enterobacterales from the gut microbiota of healthy subjects

    Get PDF
    Non-Escherichia coli Enterobacterales (NECE) can colonize the human gut and may present virulence determinants and phenotypes that represent severe heath concerns. Most information is available for virulent NECE strains, isolated from patients with an ongoing infection, while the commensal NECE population of healthy subjects is understudied. In this study, 32 NECE strains were isolated from the feces of 20 healthy adults. 16S rRNA gene sequencing and mass spectrometry attributed the isolates to Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Enterobacter kobei, Citrobacter freundii, Citrobacter amalonaticus, Cronobacter sp., and Hafnia alvei, Morganella morganii, and Serratia liquefaciens. Multiplex PCR revealed that K. pneumoniae harbored virulence genes for adhesins (mrkD, ycfM, and kpn) and enterobactin (entB) and, in one case, also for yersiniabactin (ybtS, irp1, irp2, and fyuA). Virulence genes were less numerous in the other NECE species. Biofilm formation was spread across all the species, while curli and cellulose were mainly produced by Citrobacter and Enterobacter. Among the most common antibiotics, amoxicillin-clavulanic acid was the sole against which resistance was observed, only Klebsiella strains being susceptible. The NECE inhabiting the intestine of healthy subjects have traits that may pose a health threat, taking into account the possibility of horizontal gene transfer

    Antibiotic resistance, virulence factors, phenotyping, and genotyping of non\u2013escherichia coli enterobacterales from the gut microbiota of healthy subjects

    Get PDF
    Non-Escherichia coli Enterobacterales (NECE) can colonize the human gut and may present virulence determinants and phenotypes that represent severe heath concerns. Most information is available for virulent NECE strains, isolated from patients with an ongoing infection, while the commensal NECE population of healthy subjects is understudied. In this study, 32 NECE strains were isolated from the feces of 20 healthy adults. 16S rRNA gene sequencing and mass spectrometry attributed the isolates to Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Enterobacter kobei, Citrobacter freundii, Citrobacter amalonaticus, Cronobacter sp., and Hafnia alvei, Morganella morganii, and Serratia liquefaciens. Multiplex PCR revealed that K. pneumoniae harbored virulence genes for adhesins (mrkD, ycfM, and kpn) and enterobactin (entB) and, in one case, also for yersiniabactin (ybtS, irp1, irp2, and fyuA). Virulence genes were less numerous in the other NECE species. Biofilm formation was spread across all the species, while curli and cellulose were mainly produced by Citrobacter and Enterobacter. Among the most common antibiotics, amoxicillin-clavulanic acid was the sole against which resistance was observed, only Klebsiella strains being susceptible. The NECE inhabiting the intestine of healthy subjects have traits that may pose a health threat, taking into account the possibility of horizontal gene transfer

    Antibiotic Resistance, Virulence Factors, Phenotyping, and Genotyping of E. coli Isolated from the Feces of Healthy Subjects

    Get PDF
    Escherichia coli may innocuously colonize the intestine of healthy subjects or may instigate infections in the gut or in other districts. This study investigated intestinal E. coli isolated from 20 healthy adults. Fifty-one strains were genotyped by molecular fingerprinting and analyzed for genetic and phenotypic traits, encompassing the profile of antibiotic resistance, biofilm production, the presence of surface structures (such as curli and cellulose), and their performance as recipients in conjugation experiments. A phylogroup classification and analysis of 34 virulence determinants, together with genes associated to the pks island (polyketide-peptide genotoxin colibactin) and conjugative elements, was performed. Most of the strains belonged to the phylogroups B1 and B2. The different phylogroups were separated in a principal coordinate space, considering both genetic and functional features, but not considering pulsed-field gel electrophoresis. Within the B2 and F strains, 12 shared the pattern of virulence genes with potential uropathogens. Forty-nine strains were sensitive to all the tested antibiotics. Strains similar to the potential pathogens innocuously inhabited the gut of healthy subjects. However, they may potentially act as etiologic agents of extra-intestinal infections and are susceptible to a wide range of antibiotics. Nevertheless, there is still the possibility to control infections with antibiotic therapy

    The LuGRE project: a scientific opportunity to study GNSS signals at the Moon

    Get PDF
    The Lunar GNSS Receiver Experiment (LuGRE) is a joint NASA-Italian Space Agency (ASI) payload on the Firefly Blue Ghost Mission 1 with the goal to demonstrate GNSS-based positioning, navigation, and timing at the Moon. When launched, LuGRE will collect GPS and Galileo measurements in transit between Earth and the Moon, in lunar orbit, and on the lunar surface, and will conduct onboard and ground-based navigation experiments using the collected data. These investigations will be based on the observation of the data collected by a custom development performed by the company Qascom, based on the Qascom QN400-Space GNSS receiver. The receiver is able to provide, PVT solutions, the GNSS raw observables obtained by the real time operation, as well as snapshots of IF digital samples collected by the RF front-end at frequencies L1/E1 and L5/E5. These data will be the input for the different science investigations, that require then the development of proper analysis tools that will be the core of the ground segment during the mission. The current work done by the science team of NASA and ASI, which is supported by a research team at Politecnico di Torino, is planning the data acquisitions during the time windows dedicated to the LuGRE payload in the checkout, transit and surface mission phases

    Physical characterization of colorectal cancer spheroids and evaluation of NK cell Infiltration through a flow-based analysis

    Get PDF
    To improve pathogenetic studies in cancer development and reliable preclinical testing of anti-cancer treatments, three-dimensional (3D) cultures, including spheroids, have been widely recognized as more physiologically relevant in vitro models of in vivo tumor behavior. Currently, the generation of uniformly sized spheroids is still challenging: different 3D cell culture methods produce heterogeneous populations in dimensions and morphology, that may strongly influence readouts reliability correlated to tumor growth rate or antitumor natural killer (NK) cell-mediated cytotoxicity. In this context, an increasing consensus claims the integration of microfluidic technologies within 3D cell culture, as the physical characterization of tumor spheroids is unavoidably demanded to standardize protocols and assays for in vitro testing. In this paper, we employed a flow-based method specifically conceived to measure weight, size and focused onto mass density values of tumor spheroids. These measurements are combined with confocal and digital imaging of such samples. We tested the spheroids of four colorectal cancer (CRC) cell lines that exhibit statistically relevant differences in their physical characteristics, even though starting from the same cell seeding density. These variations are seemingly cell line-dependent and associated with the number of growing cells and the degree of spheroid compaction as well, supported by different adenosine-triphosphate contents. We also showed that this technology can estimate the NK cell killing efficacy by measuring the weight loss and diameter shrinkage of tumor spheroids, alongside with the commonly used cell viability in vitro test. As the activity of NK cells relies on their infiltration rate, the in vitro sensitivity of CRC spheroids proved to be exposure time- and cell line-dependent with direct correlation to the cell viability reduction. All these functional aspects can be measured by the system and are documented by digital image analysis. In conclusion, this flow-based method potentially paves the way towards standardization of 3D cell cultures and its early adoption in cancer research to test antitumor immune response and set up new immunotherapy strategies
    • …
    corecore