18 research outputs found

    Acid selective pro-dye for cellular compartments

    Get PDF
    A novel pro-dye approach for the acid-selective staining of the subcellular compartments for better permeability and selectivity was applied. The designed sensor has suitable physicochemical properties such as a large Stokes shift and a long-lived intracellular fluorescence. The Schiff base fragment was used for the acid-sensitive release of a fluorophore without affecting the overall stability of the biological systems. Due to the presence of an imine bond in its structure and its unique fluorescent properties, it can be presented as a “pro-dye” for acidic structures such as lysosomes. As a result of an imine bond cleavage, a new fluorescent compound is released, whose substantially shifted excitation and emission wavelengths enable a more selective and effective imaging of lysosomes and endosomes. The presented report provides the chemical, physicochemical and optical profiles as well as biological assays and theoretical calculations

    Theoretical and experimental investigations of large stokes shift fluorophores based on a quinoline scaffold

    Get PDF
    A series of novel styrylquinolines with the benzylidene imine moiety were synthesized and spectroscopically characterized for their applicability in cellular staining. The spectroscopic study revealed absorption in the ultraviolet–visible region (360–380 nm) and emission that covered the blue-green range of the light (above 500 nm). The fluorescence quantum yields were also determined, which amounted to 0.079 in the best-case scenario. The structural features that are behind these values are also discussed. An analysis of the spectroscopic properties and the theoretical calculations indicated the charge-transfer character of an emission, which was additionally evaluated using the Lippert–Mataga equation. Changes in geometry in the ground and excited states, which had a significant influence on the emission process, are also discussed. Additionally, the capability of the newly synthesized compounds for cellular staining was also investigated. These small molecules could effectively penetrate through the cellular membrane. Analyses of the images that were obtained with several of the tested styrylquinolines indicated their accumulation in organelles such as the mitochondria and the endoplasmic reticulum

    The role of oxidative stress in activity of anticancer thiosemicarbazones

    Get PDF
    Thiosemicarbazones are chelators of transition metals such as iron or copper whose anticancer potency is intensively investigated. Although two compounds from this class have entered clinical trials, their precise mechanism of action is still unknown. Recent studies have suggested the mobilization of the iron ions from a cell, as well as the inhibition of ribonucleotide reductase, and the formation of reactive oxygen species. The complexity and vague nature of this mechanism not only impedes a more rational design of novel compounds, but also the further development of those that are highly active that are already in the preclinical phase. In the current work, a series of highly active thiosemicarbazones was studied for their antiproliferative activity in vitro. Our experiments indicate that these complexes have ionophoric properties and redox activity. They appeared to be very effective generating reactive oxygen species and deregulating the antioxidative potential of a cell. Moreover, the genes that are responsible for antioxidant capacity were considerably deregulated, which led to the induction of apoptosis and cell cycle arrest. On the other hand, good intercalating properties of the studied compounds may explain their ability to cleave DNA strands and to also poison related enzymes through the formation of reactive oxygen species. These findings may help to explain the particularly high selectivity that they have over normal cells, which generally have a stronger redox equilibrium

    Novel benzenesulfonate scaffolds with a high anticancer activity and G2/M cell cycle arrest

    Get PDF
    Sulfonates, unlike their derivatives, sulphonamides, have rarely been investigated for their anticancer activity. Unlike the well-known sulphonamides, esters are mainly used as conve-nient intermediates in a synthesis. Here, we present the first in-depth investigation of quinazoline sulfonates. A small series of derivatives were synthesized and tested for their anticancer activity. Based on their structural similarity, these compounds resemble tyrosine kinase inhibitors and the p53 reactivator CP-31398. Their biological activity profile, however, was more related to sulphonamides because there was a strong cell cycle arrest in the G2/M phase. Further investigation revealed a multitargeted mechanism of the action that corresponded to the p53 protein status in the cell. Al-though the compounds expressed a high submicromolar activity against leukemia and colon cancers, pancreatic cancer and glioblastoma were also susceptible. Apoptosis and autophagy were confirmed as the cell death modes that corresponded with the inhibition of metabolic activity and the activation of the p53-dependent and p53-independent pathways. Namely, there was a strong activation of the p62 protein and GADD44. Other proteins such as cdc2 were also expressed at a higher level. More-over, the classical caspase-dependent pathway in leukemia was observed at a lower concentration, which again confirmed a multitargeted mechanism. It can therefore be concluded that the sulfonates of quinazolines can be regarded as promising scaffolds for developing anticancer agents

    A [60]fullerene nanoconjugate with gemcitabine : synthesis, biophysical properties and biological evaluation for treating pancreatic cancer

    Get PDF
    Background:The first‑line chemotherapy drug that is used to treat pancreatic ductal adenocarcinoma is gemcitabine. Unfortunately, its effectiveness is hampered by its chemo‑resistance, low vascularization and drug biodistribution limitations in the tumor microenvironment. Novel nanotherapeutics must be developed in order to improve the prognosis for patients with pancreatic cancer.Results:We developed a synthetic methodology for obtaining a water‑soluble nano‑conjugate of a [60]fullerene‑glycine derivative with the FDA‑approved drug gemcit‑abine (nanoC60GEM). The proposed synthetic protocol enables a highly water‑soluble [60]fullerene‑glycine derivative (6) to be obtained, which was next successfully conju‑gated with gemcitabine using the EDCI/NHS carbodiimide protocol. The desired nano‑conjugate was characterized using mass spectrometry and DLS, IR and XPS techniques. The photogeneration of singlet oxygen and the superoxide anion radical were studied by measuring 1O2 near‑infrared luminescence at 1270 nm, followed by spin trapping of the DMPO adducts by EPR spectroscopy. The biological assays that were performed indicate that there is an inhibition of the cell cycle in the S phase and the induction of apoptosis by nanoC60GEM.Conclusion:In this paper, we present a robust approach for synthesizing a highly water‑soluble [60]fullerene nanoconjugate with gemcitabine. The performed biological assays on pancreatic cancer cell lines demonstrated cytotoxic effects of nanoC60GEM, which were enhanced by the generation of reactive oxygen species after blue LED irradiation of synthesized fullerene nanomaterial

    Forensic engineering of advanced polymeric materials—part V: Prediction studies of aliphatic–aromatic copolyester and polylactide commercial blends in view of potential applications as compostable cosmetic packages

    Get PDF
    The main aim of the present study was to determine the behavior of the specimens from Ecovio, in the form of dumbbell-shaped samples and films, during degradation in selected cosmetic ingredients such as water and paraffin. The (bio)degradation test of the prototype cosmetic package (sachet) made from a PBAT (poly[(1,4-butylene adipate)-co-(1,4-butylene terephthalate)]) and PLA (polylactide) blend was investigated under industrial composting conditions, and compared with the sample behavior during incubation in cosmetic media at 70 °C. During the degradation tests, the changes of the samples were evaluated using optical microscopy, 1H NMR (proton nuclear magnetic resonance) and GPC (gel permeation chromatography) techniques. The structures of the degradation products were investigated using ESI-MSn (mass spectrometry with electrospray ionization on positive and negative ions) analysis. The thermal properties of selected materials were determined by DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis) analysis. It was concluded that the PBAT and PLA blend studied had a good stability during aging in cosmetic media, and could be recommended for long-shelf-life compostable packaging of cosmetics, especially with oily ingredients.National Science Centre, Poland (grant numbers 2016/21/D/ST8/01993, 2013/11/B/ST5/02222), University of Wolverhampto

    Glycofullerenes as non-receptor tyrosine kinase inhibitors- towards better nanotherapeutics for pancreatic cancer treatment

    Get PDF
    The water-soluble glycofullerenes GF1 and GF2 were synthesized using two-step modified Bingel-Hirsch methodology. Interestingly, we identified buckyballs as a novel class of non-receptor Src kinases inhibitors. The evaluated compounds were found to inhibit Fyn A and BTK proteins with IC50 values in the low micromolar range, with the most active compound at 39 µM. Moreover, we have demonstrated that formation of protein corona on the surface of [60]fullerene derivatives is changing the landscape of their activity, tuning the selectivity of obtained carbon nanomaterials towards Fyn A and BTK kinases. The performed molecular biology studies revealed no cytotoxicity and no influence of engineered carbon nanomaterials on the cell cycle of PANC-1 and AsPC-1 cancer cell lines. Incubation with the tested compounds resulted in the cellular redox imbalance triggering the repair systems and influenced the changing of protein levels

    Iron chelators and exogenic photosensitizers. Synergy through oxidative stress gene expression

    Get PDF
    In non-invasive anticancer photodynamic therapy (PDT), a nontoxic photosensitizer (PS), which is activated by visible light, is used as a magic bullet that selectively destroys cancer cells. Recently, we described the combined therapy of 5-aminolevulinic acid (ALA-PDT) with thiosemicarbazone (TSC), i.e. an iron-chelating agent. This resulted in a strong synergistic effect. Herein, we investigated a novel strategy using a combination of PDT consist of the xenobiotic-porphyrin type PS with TSC. We observed a synergistic effect for all of the pairs of TSC-PS. This approach can be rationalized by the fact that both chlorin and TSC can affect the generation of reactive oxygen species (ROS). In order to elucidate the plausible mechanism of action, we also combined the investigated PSs with DFO, which forms complexes that are redox inactive. We detected a slight antagonism or additivity for this combination. This may suggest that the ability of an iron chelator (IC) to participate in the production of ROS and the generation of oxidative stress is important

    Towards water-soluble [60]fullerenes for the delivery of siRNA in a prostate cancer model

    Get PDF
    This paper presents two water-soluble fullerene nanomaterials ( HexakisaminoC60 and monoglucosamineC60, which is called here JK39) that were developed and synthesized as nonviral siRNA transfection nanosystems. The developed two-step Bingel–Hirsch reaction enables the chemical modification of the fullerene scaffold with the desired bioactive fragments such as d-glucosamine while keeping the crucial positive charged ethylenediamine based malonate. The ESI–MS and 13C-NMR analyses of JK39 confirmed its high Th symmetry, while X-ray photoelectron spectroscopy revealed the presence of nitrogen and oxygen-containing C–O or C–N bonds. The efficiency of both fullerenes as siRNA vehicles was tested in vitro using the prostate cancer cell line DU145 expressing the GFP protein. The HexakisaminoC60 fullerene was an efficient siRNA transfection agent, and decreased the GFP fluorescence signal significantly in the DU145 cells. Surprisingly, the glycofullerene JK39 was inactive in the transfection experiments, probably due to its high zeta potential and the formation of an extremely stable complex with siRNA
    corecore