43 research outputs found

    Observations of metals in the intra-cluster medium

    Get PDF
    Because of their deep gravitational potential wells, clusters of galaxies retain all the metals produced by the stellar populations of the member galaxies. Most of these metals reside in the hot plasma which dominates the baryon content of clusters. This makes them excellent laboratories for the study of the nucleosynthesis and chemical enrichment history of the Universe. Here we review the history, current possibilities and limitations of the abundance studies, and the present observational status of X-ray measurements of the chemical composition of the intra-cluster medium. We summarise the latest progress in using the abundance patterns in clusters to put constraints on theoretical models of supernovae and we show how cluster abundances provide new insights into the star-formation history of the Universe.Comment: 28 pages, 12 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 16; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    The chemical enrichment of the ICM from hydrodynamical simulations

    Get PDF
    The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.Comment: 25 pages, 11 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 18; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    X-ray Survey Results on Active Galaxy Physics and Evolution

    Full text link
    This "pedagogical" review describes the key Chandra and XMM-Newton extragalactic surveys to date and details some of their implications for AGN physics and evolution. We additionally highlight two topics of current widespread interest: (1) X-ray constraints on the AGN content of luminous submillimeter galaxies, and (2) the demography and physics of high-redshift (z > 4) AGN as revealed by X-ray observations. Finally, we discuss prospects for future X-ray surveys with Chandra, XMM-Newton, and upcoming missions.Comment: 26 pages, in Physics of Active Galactic Nuclei at All Scales, eds. Alloin D., Johnson R., Lira P. (Springer-Verlag, Berlin), version with all figures at http://www.astro.psu.edu/users/niel/papers/papers.htm

    X-raying the universe

    No full text
    corecore