11 research outputs found
Acute forces required for datal compression asphyxia: A biomechanical model and historal comparisons
Background Fatalities from acute compression have been reported with soft-drink vending machine tipping, motor vehicle accidents, and trench cave-ins. A major mechanism of such deaths is flail chest but the amount of force required is unclear. Between the range of a safe static chest compression force of 1000 N (102 kg with earth gravity) and a lethal dynamic force of 10–20 kN (falling 450 kg vending machines), there are limited quantitative human data on the force required to cause flail chest, which is a major correlate of acute fatal compression asphyxia. Methods We modeled flail chest as bilateral fractures of six adjacent ribs. The static and dynamic forces required to cause such a ribcage failure were estimated using a biomechanical model of the thorax. The results were then compared with published historical records of judicial “pressing,” vending machine fatalities, and automobile safety cadaver testing. Results and conclusion The modeling results suggest that an adult male requires 2550 ± 250 N of chest-applied distributed static force (260 ± 26 kg with earth gravity) or 4050 ± 320 N of dynamic force to cause flail chest from short-term chest compression
Environmental drivers of mixotrophs in boreal lakes
Mixotrophy is increasingly recognized as an important trophic pathway among phytoplankton, yet its underlying drivers remain largely unknown and unexplored. Here, we present a study utilizing 69 lake samplings in boreal Quebec, Canada, identifying variables driving the success of phytoplankton that have a capacity for mixotrophy and pointing to the underlying mechanisms. We found that the success of mixotrophs (% of total biomass) was positively influenced by both colored dissolved organic matter (cDOM) and dissolved CO2 concentration but limited by the abundance of crustacean zooplankton. The effect of cDOM manifested as a consequence of limited autotrophic phytoplankton biomass in lakes with reduced light penetration. We observed a nonlinear (u‐shaped) relation between CO2 and mixotrophs, with biomass favored at both low and high CO2 concentrations. A reduced fitness of mixotrophs at near‐atmospheric CO2 concentrations is likely owing to the costs of rapidly switching between or maintaining multiple trophic strategies. The abundance of zooplankton had a negative effect on mixotroph biomass but a positive effect on autotrophic phytoplankton. We also found that while the community composition of potentially mixotrophic phytoplankton was to some degree likely influenced by zooplankton biomass, composition was unaffected by the CO2 and cDOM gradients. Overall, this study highlights mixotrophy in boreal lake systems as a strategy of persistence, with the maintenance of a moderate but constant presence across a changing gradient of light and trophic conditions. The results of our study support the hypothesis that phytoplankton with a capacity for mixotrophy provide a superior and stable stoichiometric food source for zooplankton, implicating mixotrophs as a vital component of boreal lake food webs
Validation of transit-time flowmetry for chronic measurements of regional blood flow in resting and exercising rats
The objective of the present study was to validate the transit-time technique for long-term measurements of iliac and renal blood flow in rats. Flow measured with ultrasonic probes was confirmed ex vivo using excised arteries perfused at varying flow rates. An implanted 1-mm probe reproduced with accuracy different patterns of flow relative to pressure in freely moving rats and accurately quantitated the resting iliac flow value (on average 10.43 ± 0.99 ml/min or 2.78 ± 0.3 ml min-1 100 g body weight-1). The measurements were stable over an experimental period of one week but were affected by probe size (resting flows were underestimated by 57% with a 2-mm probe when compared with a 1-mm probe) and by anesthesia (in the same rats, iliac flow was reduced by 50-60% when compared to the conscious state). Instantaneous changes of iliac and renal flow during exercise and recovery were accurately measured by the transit-time technique. Iliac flow increased instantaneously at the beginning of mild exercise (from 12.03 ± 1.06 to 25.55 ± 3.89 ml/min at 15 s) and showed a smaller increase when exercise intensity increased further, reaching a plateau of 38.43 ± 1.92 ml/min at the 4th min of moderate exercise intensity. In contrast, exercise-induced reduction of renal flow was smaller and slower, with 18% and 25% decreases at mild and moderate exercise intensities. Our data indicate that transit-time flowmetry is a reliable method for long-term and continuous measurements of regional blood flow at rest and can be used to quantitate the dynamic flow changes that characterize exercise and recover