142 research outputs found
Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency
Ion acceleration driven by the interaction of an ultraintense (2x10^20 Wcm^-2) laser pulse with an ultrathin (40nm) foil target is experimentally and numerically investigated. Protons accelerated by sheath fields and via laser radiation pressure are angularly separated and identified based on their directionality and signature features (e.g. transverse instabilities) in the measured spatial-intensity distribution. A low divergence, high energy proton component is also detected when the heated target electrons expand and the target becomes relativistically transparent during the interaction. 2D and 3D particle-in-cell (PIC) simulations indicate that under these conditions a plasma jet is formed at the target rear, supported by a self-generated azimuthal magnetic field, which extends into the expanded layer of sheath-accelerated protons. Electrons trapped within this jet are directly accelerated to super-thermal energies by the portion of the laser pulse transmitted through the target. The resulting streaming of the electrons into the ion layers enhances the energy of protons in the vicinity of the jet. Through the addition of a controlled prepulse, the maximum energy of these protons is demonstrated experimentally and numerically to be sensitive to the picosecond rising edge prole of the laser pulse
The dependence of dijet production on photon virtuality in ep collisions at HERA
The dependence of dijet production on the virtuality of the exchanged photon,
Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 <
2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of
38.6 pb^-1.
Dijet cross sections were measured for jets with transverse energy E_T^jet >
7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame
in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon
momentum entering the hard process, was used to enhance the sensitivity of the
measurement to the photon structure. The Q^2 dependence of the ratio of low- to
high-xg^obs events was measured.
Next-to-leading-order QCD predictions were found to generally underestimate
the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models
based on leading-logarithmic parton-showers, using a partonic structure for the
photon which falls smoothly with increasing Q^2, provide a qualitative
description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA
Correlations between charged particles in deep inelastic ep scattering have
been studied in the Breit frame with the ZEUS detector at HERA using an
integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in
terms of the angular separation between current-region particles within a cone
centred around the virtual photon axis. Long-range correlations between the
current and target regions have also been measured. The data support
predictions for the scaling behaviour of the angular correlations at high Q2
and for anti-correlations between the current and target regions over a large
range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations
and Monte Carlo models correctly describe the trends of the data at high Q2,
but show quantitative discrepancies. The data show differences between the
correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
Beauty photoproduction measured using decays into muons in dijet events in ep collisions at =318 GeV
The photoproduction of beauty quarks in events with two jets and a muon has
been measured with the ZEUS detector at HERA using an integrated luminosity of
110 pb. The fraction of jets containing b quarks was extracted from the
transverse momentum distribution of the muon relative to the closest jet.
Differential cross sections for beauty production as a function of the
transverse momentum and pseudorapidity of the muon, of the associated jet and
of , the fraction of the photon's momentum participating in
the hard process, are compared with MC models and QCD predictions made at
next-to-leading order. The latter give a good description of the data.Comment: 32 pages, 6 tables, 7 figures Table 6 and Figure 7 revised September
200
Scaled momentum distributions for K-S(0) and Λ /̄ Λ in DIS at HERA
Scaled momentum distributions for the strange hadrons K0S and Λ/Λ¯ were measured in deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 330 pb−1. The evolution of these distributions with the photon virtuality, Q 2, was studied in the kinematic region 10 < Q 2 < 40000 GeV2 and 0.001 < x < 0.75, where x is the Bjorken scaling variable. Clear scaling violations are observed. Predictions based on different approaches to fragmentation were compared to the measurements. Leading-logarithm parton-shower Monte Carlo calculations interfaced to the Lund string fragmentation model describe the data reasonably well in the whole range measured. Next-to-leading-order QCD calculations based on fragmentation functions, FFs, extracted from e + e − data alone, fail to describe the measurements. The calculations based on FFs extracted from a global analysis including e + e −, ep and pp data give an improved description. The measurements presented in this paper have the potential to further constrain the FFs of quarks, anti-quarks and gluons yielding K0S and Λ/Λ¯ strange hadrons
Search for Resonance Decays to Lepton+jet at DESY HERA and Limits on Leptoquarks
A search for narrow-width resonances that decay into electron+jet or neutrino+jet has been performed with the ZEUS detector at the DESY ep collider HERA operating at center-of-mass energies of 300 and 318 GeV. An integrated e+p luminosity of 114.8 pb-1 and e-p luminosity of 16.7 pb-1 were used. No evidence for any resonance was found. Limits were derived on the Yukawa coupling λ as a function of the mass of a hypothetical resonance that has arbitrary decay branching ratios into eq or vq. These limits also apply to squarks predicted by R-parity-violating supersymmetry. Limits for the production of leptoquarks described by the Buchmüller-Rückl-Wyler model were also derived for masses up to 400 GeV. For λ = 0.1, leptoquark masses up to 290 GeV are excluded
Can large scintillators be used for solar-axion searches to test the cosmological axion-photon oscillation proposal?
Solar-axion interaction rates in NaI, CsI and Xe scintillators via the
axio-electric effect were calculated. A table is presented with photoelectric
and axioelectric cross sections, solar-axion fluxes, and the interaction rates
from 2.0 to 10.0 keV. The results imply that annual-modulation data of large
NaI and CsI arrays, and large Xe scintillation chambers, might be made
sensitive enough to probe coupling to photons at levels required to explain
axion-photon oscillation phenomena proposed to explain the survival of
high-energy photons traveling cosmological distances. The DAMAA/LIBRA data are
used to demonstrate the power of the model-independent annual modulation due to
the seasonal variation in the earth sun distance.Comment: 7 pages and no figure
- …
