71 research outputs found

    Circumnavigation of an Unknown Target Using UAVs with Range and Range Rate Measurements

    Full text link
    This paper presents two control algorithms enabling a UAV to circumnavigate an unknown target using range and range rate (i.e., the derivative of range) measurements. Given a prescribed orbit radius, both control algorithms (i) tend to drive the UAV toward the tangent of prescribed orbit when the UAV is outside or on the orbit, and (ii) apply zero control input if the UAV is inside the desired orbit. The algorithms differ in that, the first algorithm is smooth and unsaturated while the second algorithm is non-smooth and saturated. By analyzing properties associated with the bearing angle of the UAV relative to the target and through proper design of Lyapunov functions, it is shown that both algorithms produce the desired orbit for an arbitrary initial state. Three examples are provided as a proof of concept.Comment: To appear in IEEE Conference on Decision and Control, 201

    Adaptive Attitude Control of the Crew Launch Vehicle

    Get PDF
    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle

    Quadrotor Accelerometer and Gyroscope Sensor Fault Diagnosis Using Nonlinear Adaptive Estimation Methods

    Get PDF
    This paper presents the design, analysis, and real-time experimental evaluation results of a nonlinear sensor fault diagnosis scheme for quadrotor unmanned air vehicles (UAV). The objective is to detect, isolate, and estimate sensor bias faults in accelerometer and gyroscope measurements. Based on the quadrotor dynamics and sensor models under consideration, the effects of sensor faults are represented as virtual actuator faults in the quadrotor state equation. Two nonlinear diagnostic estimators are designed to provide structured residuals for fault detection and isolation. Additionally, after the fault is detected and isolated, a nonlinear adaptive estimation scheme is employed for estimating the unknown fault magnitude. The proposed fault diagnosis scheme is capable of handling simultaneous faults in the accelerometer and gyroscope measurements. The effectiveness of the fault diagnosis method is demonstrated using an indoor real-time quadrotor UAV test environment

    Adaptive Control of a Generic Hypersonic Vehicle

    Get PDF
    This paper presents an adaptive augmented, gain-scheduled baseline LQR-PI controller applied to the Road Runner six-degree-of-freedom generic hypersonic vehicle model. Uncertainty in control effectiveness, longitudinal center of gravity location, and aerodynamic coefficients are introduced in the model, as well as sensor bias and noise, and input time delays. The performance of the baseline controller is compared to the same design augmented with one of two different model-reference adaptive controllers: a classical open- loop reference model design, and modified closed-loop reference model design. Both adaptive controllers show improved command tracking and stability over the baseline controller when subject to these uncertainties. The closed-loop reference model controller offers the best performance, tolerating a reduced control effectiveness of 50%, rearward center of gravity shift of up to -1.6 feet (11% of vehicle length), aerodynamic coefficient uncertainty scaled 4× the nominal value, and sensor bias of up to +3.2 degrees on sideslip angle measurement. The closed-loop reference model adaptive controller maintains at least 70% of the delay margin provided by the robust baseline design when subject to varying levels of uncertainty, tolerating input time delays of between 15-41 ms during 3 degree angle of attack doublet, and 80 degree roll step commands.Approved for Public Release; Distribution Unlimited. Case Number 88ABW-2013-3392

    Adaptive Output Feedback Based on Closed-Loop Reference Models for Hypersonic Vehicles

    Get PDF
    This paper presents a new method of synthesizing an output feedback adaptive controller for a class of uncertain, non-square, multi-input multi-output systems that often occur in hypersonic vehicle models. The main challenge that needs to be addressed is the determination of a corresponding square and strictly positive real transfer function. This paper proposes a new procedure to synthesize two gain matrices that allows the realization of such a transfer function, thereby allowing a globally stable adaptive output feedback law to be generated. The unique features of this output feedback adaptive controller are a baseline controller that uses a Luenberger observer, a closed-loop reference model, manipulations of a bilinear matrix inequality, and the Kalman-Yakubovich Lemma. Using these features, a simple design procedure is proposed for the adaptive controller, and the corresponding stability property is established. The proposed adaptive controller is compared to the classical multi-input multi-output adaptive controller. A numerical example based on a scramjet powered, blended wing-body generic hypersonic vehicle model is presented. The 6 degree-of-freedom nonlinear vehicle model is linearized, giving the design model for which the controller is synthesized. The adaptive output feedback controller is then applied to an evaluation model, which is nonlinear, coupled, and includes actuator dynamics, and is shown to result in stable tracking in the presence of uncertainties that destabilize the baseline linear output feedback controller.This research is funded by the Air Force Research Laboratory/Aerospace Systems Directorate grant FA 8650-07-2-3744 for the Michigan/MIT/AFRL Collaborative Center in Control Sciences and the Boeing Strategic University Initiative. Approved for Public Release; Distribution Unlimited. Case Number 88ABW- 2014-2551

    No. 8 - The Cuban Embargo: Policy Outlook after 50 Years

    Full text link
    Organized and sponsored by the Dean Rusk Center for International Law and Policy, The Cuban Embargo: Policy Outlook after 50 Years was a daylong conference exploring issues related to the impact of trade sanctions imposed by the United States on Cuba, pathways to lifting the embargo and potential U.S.-Cuba trade opportunities. Ambassador José R, Cabañas, the chief of mission at the Cuban Interests Section in Washinton, D.C., served as the keynote speaker for the event. The transcript of the conference proceedings has been edited for publication with the consent of the speakers

    Photon-rejection Power of the Light Dark Matter eXperiment in an 8 GeV Beam

    Full text link
    The Light Dark Matter eXperiment (LDMX) is an electron-beam fixed-target experiment designed to achieve comprehensive model independent sensitivity to dark matter particles in the sub-GeV mass region. An upgrade to the LCLS-II accelerator will increase the beam energy available to LDMX from 4 to 8 GeV. Using detailed GEANT4-based simulations, we investigate the effect of the increased beam energy on the capabilities to separate signal and background, and demonstrate that the veto methodology developed for 4 GeV successfully rejects photon-induced backgrounds for at least 2×10142\times10^{14} electrons on target at 8 GeV.Comment: 28 pages, 20 figures; corrected author lis

    Evidence That Gene Activation and Silencing during Stem Cell Differentiation Requires a Transcriptionally Paused Intermediate State

    Get PDF
    A surprising portion of both mammalian and Drosophila genomes are transcriptionally paused, undergoing initiation without elongation. We tested the hypothesis that transcriptional pausing is an obligate transition state between definitive activation and silencing as human embryonic stem cells (hESCs) change state from pluripotency to mesoderm. Chromatin immunoprecipitation for trimethyl lysine 4 on histone H3 (ChIP-Chip) was used to analyze transcriptional initiation, and 3′ transcript arrays were used to determine transcript elongation. Pluripotent and mesodermal cells had equivalent fractions of the genome in active and paused transcriptional states (∼48% each), with ∼4% definitively silenced (neither initiation nor elongation). Differentiation to mesoderm changed the transcriptional state of 12% of the genome, with roughly equal numbers of genes moving toward activation or silencing. Interestingly, almost all loci (98–99%) changing transcriptional state do so either by entering or exiting the paused state. A majority of these transitions involve either loss of initiation, as genes specifying alternate lineages are archived, or gain of initiation, in anticipation of future full-length expression. The addition of chromatin dynamics permitted much earlier predictions of final cell fate compared to sole use of conventional transcript arrays. These findings indicate that the paused state may be the major transition state for genes changing expression during differentiation, and implicate control of transcriptional elongation as a key checkpoint in lineage specification

    Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon Covariation in HIV-1 Gag

    Get PDF
    HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17 and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada (predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations among HIV codons. These associations include the complete reconstruction of several recently defined escape and compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and compensatory mutations are largely consistent even across different clades, although we also identify several differences between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
    • …
    corecore