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This paper presents a new method of synthesizing an output feedback adaptive controller for a

class of uncertain, non-square, multi-input multi-output systems that often occur in hypersonic vehicle

models. The main challenge that needs to be addressed is the determination of a corresponding square

and strictly positive real transfer function. This paper proposes a new procedure to synthesize two

gain matrices that allows the realization of such a transfer function, thereby allowing a globally stable

adaptive output feedback law to be generated.

The unique features of this output feedback adaptive controller are a baseline controller that uses a

Luenberger observer, a closed-loop reference model, manipulations of a bilinear matrix inequality,

and the Kalman-Yakubovich Lemma. Using these features, a simple design procedure is proposed for

the adaptive controller, and the corresponding stability property is established. The proposed adaptive

controller is compared to the classical multi-input multi-output adaptive controller.

A numerical example based on a scramjet powered, blended wing-body generic hypersonic vehicle

model is presented. The 6 degree-of-freedom nonlinear vehicle model is linearized, giving the design

model for which the controller is synthesized. The adaptive output feedback controller is then applied
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to an evaluation model, which is nonlinear, coupled, and includes actuator dynamics, and is shown

to result in stable tracking in the presence of uncertainties that destabilize the baseline linear output

feedback controller.

Nomenclature

A = Nominal augmented open-loop state matrix

Am = Reference model state matrix

Ap = Open-loop state matrix about nominal trim

Ā = Transformed state matrix

Āij = Partition of transformed state matrix

B = Nominal augmented open-loop control input matrix

Bcmd = Nominal augmented open-loop reference input matrix

Bp = Open-loop input matrix about nominal trim

C = Nominal augmented open-loop measured output matrix

C̄ = Transformed output matrix partition

Cp = Open-loop measured output matrix about nominal trim

Cpz = Open-loop regulated output matrix about nominal trim

Cs = Post-compensated augmented state space output matrix

Dpz = Open-loop control feed-through matrix about nominal trim

E = Constant matrix

es = Synthetic output error

ex = State tracking error

ey = Measured output error

F = Matrix

G = Matrix

G(s) = Transfer matrix

H = Matrix

Hi, i = 0, 1, 2, . . . = Markov parameters

Hp = Hermite form of transfer matrix

I = Identity matrix
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J = Matrix

K = Matrix

Kp = High frequency gain matrix

Kx = Feedback gain

L = Closed-loop reference model gain

` = Dimension of measured output of open-loop plant

M = Output annihilator matrix

M0 = Transformed output annihilator matrix

m = Number of open-loop plant inputs

N = Input annihilator matrix

N1 = Matrix

N2 = Matrix

N0 = Transformed input annihilator matrix

n = Dimension of augmented plant state

ne = Number of regulated outputs

np = Dimension of open-loop plant state

P = Positive definite matrix

p = Dimension of augmented open-loop plant measured output

p = Roll rate, deg/s

Q = Positive definite matrix

Q̂ = Positive definite matrix

q = Pitch rate, deg/s

R = Matrix

r = Yaw rate, deg/s

Rp(s) = Ring of proper rational transfer functions with coefficients in R

S1 = Augmented plant measured output postcompensator

T = Matrix

t = Time, s

U = Matrix

u = Control input

ubl = Baseline control input

V (·, ·) = Lyapunov candidate
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Wp(s) = Transfer matrix

X , X11, X22 = Positive definite matrix

xe = Integral error state

xm = Reference model state

xp = System state linearized about nominal trim

y = Augmented open-loop plant measured output

ym = Reference model measured output

yp = Open-loop plant measured output

z = Open-loop plant regulated output

zcmd = Regulated command input

α = Angle of attack, deg

β = Sideslip angle, deg

Γ = Adaptive gain matrix

δa = Aileron deflection angle, deg

δe = Elevator deflection angle, deg

δr = Rudder deflection angle, deg

Θ = Adaptive parameter matrix

Θ̃ = Adaptive parameter error

Θ∗ = Ideal adaptive parameter matrix

Λ = Control ineffectiveness uncertainty

ν = Observability index

Ξ = Similarity transform matrix

Σ = State-space linear system

φ = Roll angle, deg

Ψ = Augmented open-loop plant state matrix uncertainty

Ψp = Open-loop plant state matrix uncertainty

Ω = Upper bound on state matrix uncertainty

I. Introduction

A state feedback linear quadratic regulator (LQR) baseline controller with integral action and augmented

with an adaptive component has proven to be an effective choice for accommodating the parametric uncer-
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tainties present in flight control applications, and ensuring satisfactory reference tracking [1–7]. However,

such a controller requires that the state is measurable, which may not always be possible. Also, inaccuracies

in the system output measurements may render state feedback controllers sensitive to measurement errors

and thus not applicable. For these reasons there has been an increasing drive to develop an adaptive output

feedback extension of the robust integral-augmented LQR baseline plus adaptive controller.

Existing classical methods of multi-input multi-output (MIMO) output feedback adaptive control are

applicable for plants that are square [8]. An m×m transfer matrix is used to represent the dynamic behavior

of the plant, and the existence of a stable adaptive solution depends on the available prior information about

this plant transfer matrix [9, 10]. The solution relies on non-minimal controller representations to dynam-

ically decouple the plant, and the controller structure consists of a feedforward gain and two filters in the

feedback path, the order of which depends on m and an upper bound on the observability index of the plant,

ν. The resulting classical MIMO adaptive solution will introduce 2mν controller states and 2m2ν adjustable

parameters.

More recent methods of MIMO output feedback adaptive control have adopted a Luenberger observer-

based approach in which a minimal observer is used to generate a state estimate to use for feedback control

[7, 11–13]. This observer also serves as the reference model which is used by the adaptive controller, and the

presence of the observer feedback gain L provides the structure known as the closed-loop reference model, or

CRM [14–17]. These CRM based approaches have relied on the so-called squaring-up procedure [18] to add

fictitious inputs to a tall system (one where the dimension of the output is greater than the dimension of the

input) making it square and ensuring any transmission zeros are stable. These fictitious inputs are used only

to synthesize a postcompensator S1 and the CRM gain L which ultimately render a set of underlying error

dynamics strictly positive real (SPR). These SPR error dynamics allowed stable update laws to be chosen

to guarantee system stability. We note that systems with transmission zeros cannot be squared up using the

method as described in Reference [18], which has led to a recent modification to overcome this limitation

and allow the design of output feedback controllers for systems with stable transmission zeros [19].

The CRM based output feedback design procedure proposed in this paper takes an alternative approach

to synthesizing S1 and Lwhich does not require the system first be squared-up. Instead, the postcompensator

S1 is determined as a generalized inverse of the system matrices, and a state feedback approach is used to
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stabilize a related lower order plant subsystem. This results in a feasible linear matrix inequality (LMI) which

is solved to yield L. We consider in this work the case of tall systems, but the case of wide systems holds

by duality. Furthermore, because L is a component of both the baseline and adaptive controllers, it is crucial

that it be selected to provide good frequency domain properties for the baseline control system, as well as

desirable adaptive control performance. This procedure is able to exploit the structure of the given system to

obtain a large amount of freedom in the selection of L in order to achieve a robust baseline control design

and the desired adaptive performance.

In Section II we introduce the class of uncertain plants which we wish to control, propose a control

architecture, and formulate the control problem of interest. In Section III we provide some preliminaries

which will be used in the synthesis of a globally stable controller for the uncertain system. Section IV

provides a constructive procedure for obtaining an update law for an adaptive controller which guarantees

global stability, and compares the proposed controller to the existing classical controller. Finally, a numerical

example is presented in Section V to illustrate the efficacy of this method when applied to a 6-DOF nonlinear

generic hypersonic vehicle (GHV) model [6, 20].

II. Control Problem Formulation

Consider the following MIMO uncertain open-loop system

ẋp = Apxp +Bp(Λu+ Ψ>p xp)

yp = Cpxp

z = Cpzxp +Dpz(Λu+ Ψ>p xp)

(1)

where Ap ∈ Rnp×np , Bp ∈ Rnp×m, Cp ∈ R`×np , Cpz ∈ Rne×np , Dpz ∈ Rne×m are constant known

matrices. The nonsingular matrix Λ ∈ Rm×m and Ψp ∈ Rm×np , which represents constant matched un-

certainty weights that enter the system through the columns of Bp, are unknown. The measured output is

yp, the regulated output is z, and the number of regulated outputs cannot exceed the number of inputs, that

is ne ≤ m. The goal is to design a control input u which will make z track the reference command zcmd

with bounded errors in the presence of the uncertainties Λ and Ψp. A typical example of (1) in flight control

corresponds to the tracking of a body acceleration command in the presence of uncertainties in stability and
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control derivatives. We make the following assumptions about the system in Eq. (1).

Assumption 1

A) (Ap, Bp) is controllable.

B) (Ap, Cp) is observable.

C) Bp, Cp, and CpBp are full rank.

D) Any finite transmission zeros of (Ap, Bp, Cp, 0) are strictly stable, and the rank of the following matrix

is full

rank


 Ap Bp

−Cpz Dpz


 = np + ne

E) (a) Λ is nonsingular and diagonal with entries of known sign

(b) ‖Ψp‖2 < Ω <∞, where Ω is known

In order to facilitate command tracking, we introduce integral action, and for this purpose an additional

state xe is defined as

ẋe = zcmd − z (2)

This integral error state is appended to the plant in Eq. (1) leading to the following augmented open-loop

dynamics

ẋp
ẋe

 =

 Ap 0

−Cpz 0


xp
xe

+

 Bp

−Dpz

 (Λu+ Ψ>p xp) +

0

I

 zcmd

yp
xe

 =

Cp 0

0 I


xp
xe


(3)
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The system in Eq. (3) can be written more compactly as follows

ẋ = Ax+B(Λu+ Ψ>x) +Bcmdzcmd

y = Cx

(4)

where Σ = (A,B,C, 0), and where A ∈ Rn×n, B ∈ Rn×m, Bcmd ∈ Rn×ne , and C ∈ Rp×n are the known

matrices given by

A =

 Ap 0np×ne

−Cpz 0ne×ne

 B =

 Bp

−Dpz

 Bcmd =

0np×m

Ine×ne

 C =

 Cp 0`×ne

0ne×np Ine×ne



and where Ψ = [ Ψ>p 0m×ne
]> is unknown. Note that p = ` + ne. It can be shown that Assumption 1

regarding the plant in Eq. (1) is equivalent to Assumption 1′ regarding the system Σ in (4), which is stated

below.

Assumption 1′

A) (A,B) is controllable.

B) (A,C) is observable.

C) B, C, and CB are full rank.

D) Any finite transmission zeros of (A,B,C, 0) are strictly stable.

E) (a) Λ is nonsingular and diagonal with entries of known sign

(b) ‖Ψ‖2 < Ω <∞, where Ω is known

F) Σ is tall: p > m.

Remark 1 The system in Eq. (1) satisfying Assumption 1A-D when augmented with the integral error state

as shown in Eq. (3) also satisfies Assumption 1′A-D. In other words, under Assumption 1A-D, integral

error augmentation does not destroy controllability, observability, or the rank conditions. Nor does it add any

transmission zeros [11].

Remark 2 Assumptions 1′A and 1′B are standard. Assumption 1′C implies that inputs and outputs are not

redundant, as well as a MIMO equivalent of relative degree unity. Assumption 1′D is a standard requirement
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for output feedback adaptive control. Assumption 1′F can be considered without loss of generality as the

case of wide systems p < m holds by duality. The case of square systems has been given in Reference [21]

and is discussed in Section IV.

A. Baseline Control Design

The underlying problem here is to design a control input u in Eq. (4) so that the closed-loop system

has bounded solutions and z tends to zcmd with bounded errors in the presence of the uncertainties Λ and Ψ.

In this section, we describe the baseline control design for the nominal case when there are no uncertainties

present, that is when Λ = I and Ψ = 0.

A controller along the lines of References [11–13] is proposed, as it leads to a low order robust controller.

This controller includes a Luenberger observer together with LQR feedback control gains. As our ultimate

goal is to develop an adaptive controller which in turn requires a reference model, we propose a control

design where the reference model has components of an observer as well. In particular, we introduce a

feedback component into the reference model, with the corresponding feedback gain L chosen similar to a

Luenberger gain, that is, so that it ensures adequate stability margins for the nominal closed-loop system.

The resulting reference model is referred to as a closed-loop reference model (CRM) which has been shown

recently to result in highly desirable transient properties [14–17] and is described as follows:

ẋm = Amxm +Bcmdzcmd + L(ym − y)

ym = Cxm

(5)

where Am = A + BK>x and Kx is selected such that Am is Hurwitz. Furthermore, Kx should be selected

to provide the desired closed-loop performance of the nominal system. With such a Kx, we can propose the

following baseline controller that can guarantee command tracking and a certain amount of stability margins

for the nominal closed-loop system.

ubl = K>x xm (6)
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B. Adaptive Controller

With the baseline controller determined as above, the next step is to design an adaptive controller in the

presence of Λ 6= I and Ψ 6= 0. Suppose we augment the nominal controller in Eq. (6) as

u =
(
Kx + Θ(t)

)>
xm (7)

where Θ(t) is to be determined by a suitable update law. The question is if the introduction of the parameter

Θ as in Eq. (7) is sufficient to accommodate the parametric uncertainties. For this purpose, we introduce a

matching condition as described in Remark 3 below.

Remark 3 (Matching condition) The selection of the reference model state matrix as Am = A + BK>x

guarantees the existence of a parameter Θ∗ that satisfies the following matching condition.

Am = A+BΨ> +BΛ
(
Θ∗> +K>x

)

where Θ∗ is given by

Θ∗> = (Λ−1 − I)K>x −Ψ>

Given a system satisfying Assumption 1′, the matching condition in Remark 3, and the proposed control

architecture, the reference tracking control problem is reduced to selecting the CRM gain L in Eq. (5) and a

suitable adaptive law for updating Θ(t) in Eq. (7).

In summary, the problem that is addressed in this paper is the determination of an adaptive augmented ro-

bust baseline output feedback controller as in Eq. (7) to control the plant in Eq. (4) using the CRM/Observer

as in Eq. (5). This in turn necessitates finding an adaptive law for adjusting Θ in Eq. (7) and the observer gain

L in Eq. (5). The main tools used for determining the adaptive controller involve the Kalman-Yakubovich

[10] and matrix elimination lemmas [22], which help reduce the problem of finding L to a state feedback

problem of a related lower order subsystem. Preliminaries pertaining to these tools are described in Section

III. The complete adaptive control design and the corresponding stability result are presented in Section IV,

and a numerical example is presented in Section V.
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III. Preliminaries

The following well-known lemma gives necessary and sufficient conditions to ensure that the system

(A,B,C, 0) is SPR.

Lemma 1 (Kalman-Yakubovic) Given the strictly proper transfer matrix G(s) with stabilizable and

detectable realization (A,B,C, 0), where A ∈ Rn×n is asymptotically stable, B ∈ Rn×m and C ∈ Rm×n,

then G(s) is SPR if and only if there exists a P = P> > 0 such that

A>P + PA < 0 (8)

PB = C> (9)

PROOF The proof can be found in Reference [23].

Corollary There exists a matrix P = P> > 0 that satisfies Eq. (9) if and only if

CB = (CB)> > 0 (10)

Furthermore, when Eq. (10) holds, all solutions of Eq. (9) are given by

P = C>(CB)−>C +B⊥XB⊥> (11)

where X = X> > 0 is arbitrary and B⊥ ∈ Rn×(n−m) is a basis for the orthogonal complement, or

annihilator of B. That is B⊥ must satisfy B>B⊥ = 0.

PROOF The proof can be found in Reference [21].

Lemma 2 (Matrix Elimination) Given

G+ C>L>P + PLC < 0 (12)

where G ∈ Rn×n, C ∈ Rp×n, and P = P> ∈ Rn×n is full rank, an L ∈ Rn×p exists which satisfies Eq.
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(12) if and only if the following inequality holds

C>⊥>GC>⊥ < 0

where C>⊥ ∈ Rn×(n−p) satisfies CC>⊥ = 0.

PROOF The proof can be found in Reference [22].

IV. Adaptive Control Design

In this section we provide the process for selecting the CRM gain L in Eq. (5) and the update law

for Θ in Eq. (7). To accomplish the goal of reference tracking we take an approach which focuses on the

error between the closed-loop plant and the reference model states, as opposed to each of these trajectories

individually. Thus, the goal of reference tracking can be ensured by appropriately selecting the update law

to drive this state error to zero. Similarly, we consider the error between the parameter Θ in Eq. (7) and Θ∗

in Remark 3. The resulting state tracking error and parameter error, respectively, can be defined as

ex = x− xm

Θ̃ = Θ−Θ∗

The problem of finding an adaptive law for Θ that guarantees stability depends on the relationship between

the two errors above. This relation, denoted as error model, in turn provides cues for determining the adaptive

law. In the problem under consideration, the underlying error model can be described as

ėx = (A+ LC +BΨ>)ex +BΛΘ̃>xm

ey = Cex

(13)

where ey is the measured output error. As mentioned earlier, the problem of finding a stabilizing adaptive

controller is equivalent to finding an L and an adaptive law for adjusting Θ̃ in Eq. (13). Determining a stable

adaptive law for an error model as in Eq. (13) relies on properties of an underlying transfer function that

is SPR [10], which in turn enables the use of Lemma 1 in Section III. However, the definition of SPR is
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restricted to square transfer functions. As such, for these properties to be applicable to the error model in Eq.

(13), a suitable static postcompensator S1 ∈ Rm×p has to be chosen such that

S1C(sI −A− LC −BΨ>)−1B ∈ Rm×m
p (s)

where Rp(s) denotes the ring of proper rational transfer functions with coefficients in R. That is the un-

derlying transfer matrix is square, and therefore can be evaluated in terms of SPR properties. We therefore

introduce a synthetic output error es as

es = S1Cex

With this postcompensator, the underlying error model is modified as

ėx = (A+ LC +BΨ>)ex +BΛΘ̃>xm

es = S1Cex

(14)

Thus, the design of an output feedback adaptive controller is reduced to selecting matrices S1 ∈ Rm×p and

L ∈ Rn×p such that the error dynamics in Eq. (14) are SPR.

In Section IV A we provide a procedure to construct S1 and L. This procedure requires S1 to be solved

as a generalized inverse based on the matrices of Σ in Eq. (4) alone. L is found by satisfying Lemma 1

(Kalman-Yakubovich), the solution of which is reduced to a state-feedback problem of a lower-order plant

subsystem which ultimately leads to a feasible LMI which is solved numerically to obtain L.

A. Finding S1 and L

In this section we provide a method for selecting S1 and L which ensure the system in Eq. (14) is SPR.

The conditions from Lemma 1 to ensure (A+ LC +BΨ>, B, S1C) is SPR are given by

(A+ LC +BΨ>)>P + P (A+ LC +BΨ>) < 0 (15)

PB = (S1C)> (16)
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where, by the corollary to Lemma 1, a P exists which satisfies Eq. (16) if and only if S1CB = (S1CB)>.

1. Finding S1

The matrix S1 satisfying Eq. (16) can be computed as a generalized left inverse of CB as

S1 =
(
(CB)>CB

)−1
(CB)> (17)

Note that this choice of S1 is not unique.

2. Finding L

The annihilator matrices B⊥ and C>⊥ in Section III are not unique. In the following subsection we

will use the notation N and M to represent particular annihilators that satisfy NB = 0, CM = 0, and a

few additional desired properties. That is, N represents a particular B⊥> and M a particular C>⊥. Given

arbitrary annihilators B⊥ and C>⊥ we provide a constructive process for obtaining N and M , and use these

matrices to find L. The inequality Eq. (15) is satisfied if the following inequality is satisfied

(A+ LC)>P + P (A+ LC) +Q < 0 (18)

for

ΨB>P + PBΨ> < Q (19)

Using Eq. (16), the inequality Eq. (19) can be written as

ΨS1C + (ΨS1C)> < Q (20)

Note that Q satisfying Eq. (20) is independent of P . Using Lemma 2, an L exists which satisfies Eq. (18) if

and only if a P exists which satisfies

M>(A>P + PA)M < −M>QM (21)
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Using Eq. (11), P is given by

P = (S1C)>(S1CB)−>S1C +N>XN (22)

Substituting Eq. (22) into Eq. (21) we obtain

(NAM)>XNM + (NM)>X(NAM) < −M>QM (23)

Thus, the problem of finding an SPR L which satisfies Eq. (15) is now reduced to finding the matrix X

satisfying Eq. (23). An X satisfying Eq. (23) specifies a P as in Eq. (22) that reduces Eq. (15) to a feasible

LMI in L. This feasible LMI can then be easily solved using any widely available numerical LMI solver.

Reference [21] gave the inequality Eq. (23) for a square system, suggesting that X be obtained by solv-

ing this LMI numerically. However, it was shown in Reference [24] that for a square system, the eigenvalues

of NAM are the transmission zeros of the system and the annihilators N and M can be always be selected

such that NM = I . Given a square system with only stable transmission zeros, this selection reduces Eq.

(23) to a Lyapunov equation where the matrix NAM is stable, and the existence of X > 0 satisfying this

inequality is guaranteed [25]. Thus, when the system Σ in Eq. (4) is square, Eq. (23) can be solved to

obtain X , and P can be computed using Eq. (22). The inequality Eq. (15) can then be solved for L. For a

non-square systems the matrix NAM is not square, and so determining X > 0 satisfying Eq. (23) requires

additional steps.

a. Determining a Similarity Transform We will now define a similarity transform Ξ that will allow

annihilator matricesN andM in Eq. (23) to be computed given arbitrary annihilatorsB⊥ andC>⊥. Defining

Ξ as

Ξ =

[
B F C>⊥

]
(24)
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it is always possible to choose F ∈ Rn×(p−m) so that Ξ is invertible and

CΞ =

[
C̄ 0p×(n−p)

]
Ξ−1B =

[
Im×m 0m×(n−m)

]>

where C̄ ∈ Rp×p [26]. Note that by Assumption 1′C the matrix CB is full rank, implying that none of

the columns of B lie in the nullspace of C. Thus the columns of
[
B C>⊥

]
are linearly independent. The

columns of F which ensure Eq. (24) is invertible lie in null(B>) ∩ range(C>). Define

Ā = Ξ−1AΞ =


Ā11 Ā12

Ā21 Ā22

Ā31 Ā32

 (25)

where Ā22 ∈ R(p−m)×(n−p) and Ā32 ∈ R(n−p)×(n−p). Define the following transformed eliminators N0

and M0 which satisfy N0Ξ−1B = 0(n−m)×m and CΞM0 = 0p×(n−p) as

N0 =

[
0(n−m)×m I(n−m)×(n−m)

]
(26)

M0 =

[
0(n−p)×p I(n−p)×(n−p)

]>
(27)

Note that these choices are not unique. Define

N = N0Ξ−1 (28)

M = ΞM0 (29)

Note that with the selection of M0 in Eq. (27) and with Ξ in Eq. (24) that M = C>⊥. The matrix NM is

given by

NM =

[
0(n−p)×(p−m) I(n−p)×(n−p)

]>
(30)
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The inverse of Ξ is given by

Ξ−1 =


R

N1

N2

 (31)

where R ∈ Rm×n, N1 ∈ R(p−m)×n and N2 ∈ R(n−p)×n, and Ξ−1 must obviously satisfy

Ξ−1Ξ =


R

N1

N2


[
B F C>⊥

]
= I (32)

where the matrix F , and thus Ξ and therefore Ξ−1 are yet to be determined. From this we have that N2B =

0(n−p)×m, N2F = 0(n−p)×(p−m), and N2C
>⊥ = I(n−p)×(n−p). With this choice of Ξ the matrix NAM

can be expressed as

NAM =

Ā22

Ā32

 =

[
0(n−m)×m I(n−m)×(n−m)

]

Ā11 Ā12

Ā21 Ā22

Ā31 Ā32


 0p×(n−p)

I(n−p)×(n−p)

 (33)

Note that with the choice of NM satisfying Eq. (30), we can partition X as

X =

 X11 0(p−m)×(n−p)

0(n−p)×(p−m) X22

 (34)

where X11 ∈ R(p−m)×(p−m) and X22 ∈ R(n−p)×(n−p) and X > 0 if X11 > 0 and X22 > 0. Evaluating

XNM we have

XNM =

0(p−m)×(n−p)

X22


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And so Eq. (23) is equivalent to the following Lyapunov equation

Ā>32X22 +X22Ā32 = −Q̄ < −M>QM (35)

where Q̄ is selected such that −Q̄ < −M>QM . Furthermore, the matrix F which defines Ξ in Eq. (24)

must be selected such that Ā32 is Hurwitz, thus allowing X22 to be obtained as the solution to Eq. (35).

X11 > 0 can then be selected arbitrarily to specify X . Expanding Eq. (33) using Eq. (28) and Eq. (29) we

have

Ā22

Ā32

 =

[
0(n−m)×m I(n−m)×(n−m)

]

R

N1

N2

A
[
B F C>⊥

] 0p×(n−p)

I(n−p)×(n−p)



From which we can see

Ā32 = N2AC
>⊥

Recall from Eq. (32) that N2 has to satisfy N2B = 0, N2C
>⊥ = I , and N2F = 0. To satisfy the first of

these two conditions we see that N2 lies in the nullspace of B> and so N2 has the form

N2 = KB⊥> (36)

whereK ∈ R(n−p)×(n−m). With the choice ofN2 as in Eq. (36) the second condition from Eq. (32) requires

that K satisfies KB⊥>C>⊥ = I , where such a K takes the columns of B⊥ which are spanned by the

columns of C>⊥. The columns of K⊥B⊥ where K⊥ satisfies KK⊥ = 0 thus lie in null(B>)∩ range(C>),

and so selecting F as

F = B⊥K⊥ (37)
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ensures that Eq. (24) is invertible. With the choice of N2 as in Eq. (36) we can then express Ā32 as

Ā32 = KB⊥>AC>⊥

The remaining requirements described above are stated as: find K ∈ R(n−p)×(n−m) such that

KB⊥>C>⊥ = I(n−p)×(n−p) (38)

Ā32 = KB⊥>AC>⊥ is Hurwitz (39)

b. An Equivalent State Feedback Problem We continue by showing how the selection ofK satisfying

Eq. (38) and Eq. (39), can be found by solving a state feedback problem. The requirement in Eq. (38) is

that K is a left inverse of the tall matrix B⊥>C>⊥. This matrix has full rank by Assumption 1′C. The

generalized inverse of a tall matrix T ∈ R(n−m)×(n−p) with full rank is given by

T− = T † + U(I(n−m)×(n−m) − TT †)

where U ∈ R(n−p)×(n−m) is arbitrary and † is the Moore-Penrose pseudo inverse. This gives a form of all

K satisfying Eq. (38) as

K = (B⊥>C>⊥)† + U
(
I(n−m)×(n−m) − (B⊥>C>⊥)(B⊥>C>⊥)†

)

This can be simplified as

K = (B⊥>C>⊥)† + U
(
I(n−m)×(n−m) − J

)
J = (B⊥>C>⊥)(B⊥>C>⊥)†

(40)

(41)

where J ∈ R(n−m)×(n−m) is a rank n− p matrix. Thus Ā32 is given by

Ā32 =

[
(B⊥>C>⊥)† + U

(
I(n−m)×(n−m) − J

)]
B⊥>AC>⊥
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which can be written

Ā32 = G+ UH (42)

where G ∈ R(n−p)×(n−p) and H ∈ R(n−m)×(n−p) are given by

G = (B⊥>C>⊥)†B⊥>AC>⊥

H =
(
I(n−m)×(n−m) − J

)
B⊥>AC>⊥

(43)

(44)

Selecting U such that Ā32 is Hurwitz is possible in general if (G>, H>) is controllable. The uncontrollable

modes of (G>, H>) correspond to the transmission zeros of Σ [27]. If the system has any unstable zeros,

no U can be found such that Ā32 is Hurwitz. If the system has stable transmission zeros, (G>, H>) is

stabilizable, and U can be selected to stabilize the remaining modes. If the system has no transmission zeros,

(G>, H>) is controllable, and U can be picked to make the poles of Ā32 arbitrarily. By Assumption 1′D Σ

has no unstable transmission zeros, so (G>, H>) will be at least stabilizable. With U computed using the

desired state-space technique, Ā32 is determined as in Eq. (42). K can then be solved for from Eq. (40)

and Eq. (41), N2 computed using Eq. (36) and F using Eq. (37). With this F , the matrix Ξ is completely

specified, and N can be solved for from Eq. (28) and M given by M = C>⊥. Finally, Eq. (35) must

be solved to obtain X22, which requires the specification of Q > 0. The following paragraph and theorem

provide a method to select an appropriate Q.

c. Solving the LMI to Obtain L All that remains to solve the LMI in Eq. (18) for L is to specify

P as given by Eq. (22) and Q. Solving Eq. (35) for X22 also requires Q, although this equation places

no restriction on how Q > 0 is selected. However, we must choose an appropriate Q which guarantees the

feasibility of the LMI in Eq. (18) by satisfying Eq. (20), as given by the following theorem.

Theorem 1 If Q is chosen as

Q = 2Ω‖Cs‖2In×n (45)

where Cs = S1C and Ω is defined as in Assumption 1E-(b), then Eq. (20) holds.
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PROOF Using Cs = S1C the inequality Eq. (20) can be written

ΨCs + (ΨCs)
> < Q

Using ΨCs ≤ ‖ΨCs‖2I ≤ ‖Ψ‖2‖Cs‖2I < Ω‖Cs‖2I the matrix Q in Eq. (45) satisfies Eq. (20).

With Q picked as in Eq. (45) and Ā32 made stable by selection of U in Eq. (42), the Lyapunov equation

in Eq. (35) can be solved to obtain X22. This procedure guarantees the feasibility of the LMI in Eq. (18)

which can be solved numerically with any widely available solver. This procedure is summarized in the

following subsection.

B. Summary of the Design Procedure for S1 and L

Section IV A provided a procedure to determine S1 and L for the system Σ satisfying Assumption 1′

which render Eq. (14) SPR. This subsection summarizes the overall procedure. Given known plant matrices

A, B, Bcmd, C, and uncertainties Λ and Ψ in Eq. (4), reference model in Eq. (5), and control law in Eq. (7),

the following steps provide a procedure to determine S1 and L such that the underlying error dynamics in

Eq. (14) are SPR:

1. Solve for S1 as in Eq. (17).

2. Determine arbitrary annihilators B⊥ and C>⊥ such that B>B⊥ = 0 and CC>⊥ = 0.

3. Calculate matrices G and H using Eq. (41), Eq. (43), and Eq. (44) and then solve for U such that Ā32

in Eq. (42) is Hurwitz.

4. Compute K using Eq. (40) F using Eq. (37), and N2 using Eq. (36).

5. Define N0 as in Eq. (26). Calculate N = N0Ξ−1 and set M = C>⊥.

6. Select Q as in Eq. (45) and solve Eq. (35) to obtain X22. Assemble X as shown in Eq. (34) where

X11 > 0 is arbitrary.

7. Solve for P as in Eq. (22).

8. Solve the LMI in Eq. (18) to obtain L

21



Remark 4 In the case where p −m ≥ n − p, we are ensured that H in Eq. (42) is a matrix of full column

rank and so H†H = I(n−p)×(n−p). This provides the freedom in selecting U to not only make Ā32 stable,

but to select it to be any stable matrix. This allows us to select X22 > 0 arbitrarily, and then solve for Ā∗32 as

the solution to the Lyapunov equation Ā∗>32 X22 +X22Ā
∗
32 = −M>QM . Then U can be picked in step 3 as

U =
(
Ā∗32 −G

)
H† (46)

Remark 5 The calculation of L should conclude with the verification thatA+LC+BK>x is Hurwitz. While

this is not a theoretical requirement, for practical implementation on systems such as the one presented in

Section V, this requirement is enforced to ensure the reference model in Eq. (5) is stable.

C. Adaptive Law and Stability Proof

Using the closed-loop reference model defined in Eq. (5) with L selected as described in Section IV A,

we then propose the following update law:

˙̃
Θ = −Γxm(S1ey)>sgn(Λ) (47)

where S1 is chosen using Eq. (17). Globally stability of the closed-loop system is guaranteed by the following

theorem.

Theorem 2 Given the uncertain linear system in Eq. (4) which satisfies Assumption 1′, the reference model

in Eq. (5), and control law as in Eq. (7), the update law in Eq. (47) results in global stability, with ex(t)→ 0

as t→∞.

PROOF With a radially unbounded Lyapunov function candidate

V (ex, Θ̃) = e>x Pex + tr
(
|Λ|Θ̃>Γ−1Θ̃

)
(48)

where the operation | · | takes the absolute value of each entry of the matrix argument, we obtain a time-
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derivative V̇ as

V̇ = ė>x Pex + e>x P ėx + tr
(
|Λ| ˙̃Θ

>
Γ−1Θ̃

)
+ tr

(
|Λ|Θ̃>Γ−1

˙̃
Θ
)

Substituting in the error dynamics equation

ėx = ALex +BΛΘ̃>xm

where AL = A+ LC +BΨ> we obtain

V̇ = (ALex +BΛΘ̃>xm)>Pex + e>x P (ALex +BΛΘ̃>xm) + 2tr
(
|Λ|Θ̃>Γ−1

˙̃
Θ
)

= e>xA
>
LPex + e>x PALex + 2e>x PBΛΘ̃>xm + 2tr

(
|Λ|Θ̃>Γ−1

˙̃
Θ
)

= e>x (A>LP + PAL)ex + 2e>x PBΛΘ̃>xm + 2tr
(
|Λ|Θ̃>Γ−1

˙̃
Θ
)

Let A>LP + PAL = −Q̂ < 0 as assured by the selection of L satisfying Eq. (15) giving

V̇ = −e>x Q̂ex + 2e>x PBΛΘ̃>xm + 2tr
(
|Λ|Θ̃>Γ−1

˙̃
Θ
)

Substituting the update law given in Eq. (47) we obtain

V̇ = −e>x Q̂ex + 2e>x C
>S>1 ΛΘ̃>xm + 2tr

(
|Λ|Θ̃>Γ−1

(
− Γxme

>
y S
>
1 sgn(Λ)

))
= −e>x Q̂ex + 2e>s ΛΘ̃>xm − 2tr

(
|Λ|Θ̃>xme>y S>1 sgn(Λ)

)
= −e>x Q̂ex + 2e>s ΛΘ̃>xm − 2tr

(
e>s ΛΘ̃>xm

)
= −e>x Q̂ex

Which implies that V is a Lyapunov function. Since V > 0 and V̇ ≤ 0, we have V (t) ≤ V (0) < ∞. Thus

V (t) ∈ L∞ which implies ex, Θ̃ ∈ L∞. Since zcmd, ex ∈ L∞ and the reference model is stable, xm ∈ L∞,

which implies that x ∈ L∞. Furthermore,
∫ t

0
V̇ (τ)dτ = V (t) − V (0) and since V is non increasing and

positive definite, V (0)− V (t) ≤ V (0). This gives −
∫ t

0
V̇ (τ)dτ ≤ V (0). Substituting in our expression for

V̇ = −e>x Q̂ex gives
∫ t

0
ex(τ)>Q̂ex(τ)dτ ≤ V (0) and in turn that ex ∈ L2. Finally, looking at Eq. (14)
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with ex, Θ̃, , xm ∈ L∞ we have that ėx ∈ L∞. With this, we conclude using Barbalat’s Lemma [10] that

ex(t)→ 0 as t→∞. Since Eq. (48) is radially unbounded stability is global.

Remark 6 The use of the closed-loop reference model in Eq. (5) in no way compromises stability of the

closed-loop system. Furthermore, with ex(t) → 0 asymptotically as t → ∞, the term L(ym − y) in Eq.

(5) tends to zero asymptotically, which in turn indicates that the output of the closed-loop reference model

in Eq. (5) tracks that of an open loop reference model (given by Eq. (5) with L = 0) asymptotically. The

transient response of the closed-loop reference model as compared with its open-loop counterpart have been

discussed in [16, 17]. Bounded reference tracking of zcmd by z follows from the stability of the closed-loop

system.

Remark 7 When compared to the existing CRM based adaptive control approaches [7, 11, 13], our method

offers an approach which is computationally simpler, requiring primarily finding nullspaces of some matrices,

as described in the step-by-step procedure in Section IV B.

In the following section we demonstrate the efficacy of the proposed method by providing a numerical

example, but first we examine the applicability of the CRM based method as compared to the classical MIMO

adaptive control method.

D. Comparison Between CRM based and Classical MIMO Adaptive Control

Given the classical approaches used in the literature thus far, the obvious question that is raised is how

the proposed MIMO controller fares compared to the classical ones. The first point to note here is that the

classical approaches are limited to square plants while our approach proposed here is not. This is the most

obvious advantage of our method. The next question that arises is a comparison of the two approaches when

the underlying plant is square. This is addressed below.

As a first step, we provide relevant definitions below:

Definition 1 (Markov Parameters) [28] Given a transfer matrix G(s), the Markov Parameters are given by

H0 = lim
s→∞

G(s), H1 = lim
s→∞

s(G(s)−H0), H2 = lim
s→∞

s2(G(s)−H0 −H1s
−1)

and so forth.
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Theorem 3 The set (A,B,C,D) is a realization of G(s) if and only if

H0 = D Hi = CAi−1B, i = 1, 2, . . .

PROOF The proof can be found in Reference [28].

Definition 2 (Relative Degree One) The MIMO system G(s) with realization (A,B,C,D) is said to be

Relative Degree One if H0 = 0 and H1 = CB is full rank.

Lemma 3 Reference [10] Given a square nonsingular strictly proper transfer matrixWp(s) ∈ Rm×m
p (s),

its Hermite form is diagonal if and only if the constant matrix E(Wp(s)) is nonsingular, where E is calcu-

lated as follows. Calculate ri as the minimum relative degree in the ith row of Wp(s) and the rows of E

are

Ei = lim
s→∞

sriWp,i(s) (49)

where Wp,i(s) corresponds to the ith row of Wp(s).

PROOF The proof can be found in Reference [29]

GivenWp(s) ∈ Rm×m
p (s), the assumptions that must be satisfied for a classical adaptive control solution

to exist are as follows [10].

Assumption 2

(i) The high frequency gain matrix Kp is of the form Kp = KpΛ where Kp is known and sign(Λ) is

known.

(ii) The right Hermite normal form Hp(s) of Wp(s) is known.

(iii) An upper bound ν on the observability index of Wp(s) is known.

(iv) The zeros of Wp(s) lie in C−.

Theorem 4 Given the square plantWp(s) ∈ Rm×m
p with realization (A,B,C, 0), the Hermite formHp(s)

of Wp(s) is diagonal if CB is full rank. Furthermore, the high frequency gain matrix is given by Kp = CB.

PROOF Theorem 3 connects the Markov Parameters of Relative Degree One systems to the realization of

Wp(s) with H0 = 0 and H1 = CB. With this and Definition 1 we have that lims→∞ sWp(s) = CB is full
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rank, and so the minimum relative degree in each row of Wp(s) is ri = 1. By Lemma 3 E(Wp(s)) = CB

and the Hermite form Hp(s) of Wp(s) is diagonal. In Reference [10] it is shown that E(Wp(s)) = Kp.

Using Definitions 1 and 2 as well as Theorems 3 and 4, we show in Proposition 1 that the classical and

our CRM based MIMO adaptive control solution in this paper are equally applicable when the system in Eq.

(1) is square.

Proposition 1 Consider the uncertain system in Eq. (1) where ` = m and the plant transfer matrix is given

by

Wp(s) = Cp(sI −Ap −BpΨ>p )−1BpΛ (50)

if the plant in Eq. (1) satisfies Assumption 1, then the corresponding Wp(s) in Eq. (50) satisfies Assumption

2.

PROOF Assumption 1E-(a) and Theorem 4 can be shown to imply that the corresponding Kp satisfies

Assumption 2(i). Assumption 1C together with Theorem 4 implies that the corresponding Hermite form is

diagonal with known entries and is therefore known, which leads to Assumption 2(ii). Assumption 2(iii)

follows from the fact that np is known. Finally Assumption 1D is equivalent to Assumption 2(iv).

In addition to the main advantage of our proposed method of applicability to non-square plants, our

proposed controller is of lower order, requiring only n controller states and nm adjustable parameters, as

compared with the classical solution which will introduce 2mν states and 2m2ν parameters. This reduces

the number of states and parameters necessary by at least two, since n ≤ νm [30]. Finally our solution is

based on a CRM, which has been shown to possess a superior transient performance [14–17].

It should be noted that of Assumptions 1A-E, which are required to be satisfied for the proposed con-

troller, the most restrictive one is Assumption 1C, which implies that the MIMO system must have Relative

Degree One. In most aerial platforms including hypersonic vehicles, this assumption is easy to satisfy as the

relative degree of the transfer functions between the control surface deflections and aircraft angular rates is

unity. Additionally, the structure of the plant as in Eq. (1) which has matched uncertainties is also commonly

present in flight control applications where much of the plant uncertainty is in the aerodynamic moment

coefficients and loss of control effectiveness, which are spanned by the columns of B. It is however required
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that the uncertainty Ψp satisfy Assumption 1E-(b), which is not required in the classical approach. Note

finally that the above comparison between the proposed controller and the classical ones was done for Rela-

tive Degree One plants only. Clearly the classical methods such as those in Reference [10] are applicable to

plants with with larger relative degrees, where the proposed method is not.

V. Numerical Example

We now present a numerical example using this output feedback design procedure applied to the control

design for a 6-DOF Generic Hypersonic Vehicle model [6, 20]. The GHV is a small blended wing-body

vehicle, with 3-D inlet and nozzle, and axisymmetric through-flow scramjet engine. The nonlinear equations

of motion describing the GHV are linearized about a nominal flight condition of Mach 6 at an altitude

of 80,000 feet, corresponding to a dynamic pressure of 1474 psf. Modal analysis allowed the linearized

equations of motion to be decoupled, and the resulting uncertain longitudinal and lateral-directional plant

subsystems are represented as in Eq. (1). These two subsystems compose the design model - the system for

which the controller is synthesized. In Reference [6] a state feedback LQR baseline controller with integral

action and augmented with an adaptive component was applied to design two independent CRM based state

feedback adaptive controllers - one for each of the plant subsystems. This approach was very effective at

maintaining stability and tracking performance in the presence of uncertainty, but assumed availability of

angle-of-attack and sideslip angle measurements. In this work, we no longer assume that these incidence

angles are measurable, which is more realistic for this class of vehicle, thus turning the problem into one

of output feedback. The adaptive control design procedure described in Section IV was used to design two

independent CRM based output feedback adaptive controllers - one for each of the two plant subsystems.

A. Longitudinal Subsystem

The state, control, output, and regulated output for the linear longitudinal subsystem as represented in

Eq. (1) are given by

xp =

[
α q

]>
u = δe yp = q z = q
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respectively, where α represents the angle of attack, and q is the pitch rate. The control input δe represents

the elevator deflection angle. The pitch rate is measurable but the angle of attack is not. The control goal

is to track pitch rate commands zcmd = qcmd. The longitudinal subsystem satisfies Assumption 1. The state

vector xp is augmented with the integral error state as in Eq. (2) resulting in a system of the form Eq. (4)

which satisfies Assumption 1′. The augmented state and output vector are

x =

[
α q xe

]>
y =

[
q xe

]>

The baseline control gain Kx in Eq. (6) was computed resulting in the following state feedback gain and

phase margin

GMsf = [ −14.5, 165.7 ] dB

PMsf = 60 deg

The controller was then tuned by selecting X11 > 0 and solving for X22 in step 6 resulting in

X =

 2 0

0 13.3


This provided the following gain and phase margin for the resulting output feedback compensator

GMof = [ −14.2, 33.2 ] dB

PMof = 59 deg

The numerical values for the linear system matrices and LQR weighting matrices can be found in the ap-

pendix.
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B. Lateral Subsystem

The state, control, output, and regulated output for the linear lateral-directional subsystem as represented

in Eq. (1) are given by

xp =

[
β p r φ

]>
u =

[
δa δr

]>
yp =

[
p r φ

]>
z = φ

respectively, where β represents the sideslip angle, p the roll rate, r the yaw rate, and φ the roll angle.

The control inputs δa and δr represent the aileron and rudder deflection angles, respectively. All states are

measurable except the sideslip angle. The control goal is to track roll angle commands zcmd = φcmd. The

lateral-directional subsystem can be shown to satisfy Assumption 1. The state vector xp is augmented with

the integral error state as in Eq. (2) resulting in a system of the form Eq. (4) which satisfies Assumption 1′.

The augmented state and output vector are

x =

[
β p r φ xe

]>
y =

[
p r φ xe

]>

The baseline control gain Kx in Eq. (6) was computed resulting in the following state feedback gain and

phase margin

GMsf = [ −6.5, 161 ] dB

PMsf = 60 deg

Since the conditions of Remark 4 are satisfied, X22 can be selected arbitrarily. The controller was then tuned

by selecting X11 > 0 and X22 > 0 resulting in

X =


2 0 0

0 2 0

0 0 2


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This provided the following gain and phase margin for the resulting output feedback compensator

GMof = [ −7.3, 14.5 ] dB

PMof = 48 deg

The numerical values for the linear system matrices and LQR weighting matrices can be found in the ap-

pendix.

Table 2 Second order aerodynamic control surface actuator parameters

Parameter Unit Value

Surface deflection limit [deg] −30 to 30
Surface rate limit [deg/s] −100 to 100
Damping ratio ζ 0.7
Natural frequency ωn [rad/s] 150

The performance and robustness of the adaptive controllers synthesized using the design model as rep-

resented by Eq. (1) were evaluated by applying these controllers to an evaluation model - the hypersonic

vehicle which is nonlinear and includes actuator dynamics. Uncertainties were introduced in the nonlinear

model, which manifest themselves in the uncertain linear system as given in Eq. (1). The uncertainty is as

follows:

• Control effectiveness on all surfaces is reduced to 60% of the nominal value.

• Center of gravity is shifted 1.6 feet rearward, effectively representing an unknown center of pressure

location.

• The rolling moment coefficient Cl is reduced to 10% of the nominal value.

The simulation block diagram is shown in Figure 1.

Figure 1 Simulation block diagram: evaluation model.
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A 45 degree roll angle command was given, while commanding zero pitch rate. Figure 2 shows the

response of the nominal system, with no uncertainty and only the baseline control law: Θ = 0. Figure 3

shows the response of the the system with the above uncertainty introduced and only the baseline controller:

Θ = 0. Figure 4 shows the response of the system with the uncertainties when the adaptive augmentation is

used.

The baseline control law applied to the nominal linear system provides good stability margins and

closed-loop performance on the 6-DOF nonlinear evaluation model as shown in Figure 2. The system has a

small rise time, minimal overshoot, and a small settling time. With the baseline control law only, introduction

of the uncertainties causes greater initial overshoot, followed by significant high frequency oscillations, ulti-

mately leading to instability and loss of the aircraft, as shown in Figure 3. The use of the adaptive component

in the control law recovers the baseline control performance, as shown in Figure 4. When using the adaptive

controller, both the control deflections and rates are well within acceptable limits.

Figure 2 Time response of the nominal system: baseline controller with no uncertainty.
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Figure 3 Time response of baseline control applied to uncertain plant.

Figure 4 Time response of baseline controller with adaptive augmentation applied to uncertain plant.
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VI. Conclusion

This paper has proposed a new alternative method for synthesizing a CRM based output feedback adap-

tive controller for a class of uncertain MIMO systems which do not have any unstable transmission zeros.

The controller is composed of a baseline control gain augmented with an adaptive component to accom-

modate control effectiveness uncertainty and matched plant uncertainty, and makes use of the closed-loop

reference model to improve the transient properties of the overall adaptive system. The adaptive controller

requires the underlying error dynamics be made SPR through the synthesis of the postcompensator S1 and

CRM gain L, and the SPR relationship is enforced by reducing an underlying bilinear matrix inequality to

a feasible linear matrix inequality through appropriate selection of a tuning matrix X . The procedure does

not require the plant first be squared-up. It is computationally simple, and it requires only the calculation of

some generalized inverses, the solution of the Lyapunov equation, and the solution of a reduced order state

feedback problem. This procedure is summarized in eight straightforward steps. Furthermore, the degrees

of freedom in the tuning matrix X capture a large subset of all possible solutions which ensure the SPR

property. Using these degrees of freedom, X can be tuned to provide the desired stability margins for the

baseline system, and a globally stable update law. The result is a baseline output feedback controller with

good stability margins and adaptive augmentation capable of accommodating matched uncertainties.

This resulting robust baseline output feedback controller with adaptive augmentation is shown in simula-

tion to provide good tracking performance when applied to a 6-DOF simulation of a hypersonic vehicle with

significant uncertainty in control effectiveness, CG shift, and the rolling moment coefficient. The simulation

results showed that for this uncertainty the robust baseline controller alone was unable to maintain stabil-

ity, whereas the adaptive controller recovered nominal performance even with the presence of unmodeled

actuator dynamics.

Appendix

Longitudinal Subsystem Numerical Data

The nominal longitudinal plant matrices for a flight condition of Mach 6 at an altitude of 80,000 feet are:

Ap =

 −0.2398 1.0000

4.5689 −0.1189

 Bp =

 −0.0001

−0.18561

 Cp =

[
0 1

]
Cpz =

[
0 1

]
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The following weighting matrices were used to compute Kx as in Eq. (6) using the MATLAB command

lqr

Qlqr = diag
(
[ 0, 0.3, 170 ]

)
Rlqr = 0.0001

Lateral Subsystem Numerical Data

The nominal lateral-directional plant matrices for a flight condition of Mach 6 at an altitude of 80,000

feet are:

Ap =



−0.0699 −0.0105 −1.0000 0.0053

−1331.0 −2.0308 −0.0076 0

1.9465 −0.0016 −0.0533 0

−0.0002 0.8536 0 0


Bp =



0 0.0002

−8.1073 10.4560

0.0320 −0.2884

0 0



Cp =


0 1 0 0

0 0 1 0

0 0 0 1

 Cpz =

[
0 0 0 1

]

The following weighting matrices were used to compute Kx as in Eq. (6) using the MATLAB command

lqr

Qlqr = diag
(
[ 0, 0.2, 40, 0, 0.2 ]

)
Rlqr = diag

(
[ 0.005, 0.005]

)
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