
CHAPTER IX

ADAPTIVE ATTITUDE CONTROL OF THE

CREW LAUNCH VEHICLE

9.1 Introduction

Classical linear control laws have been developed for the NASA’s Crew Launch Vehicle

(CLV). Preliminary design of the Ares-I flight control system has shown that classical

control theory is sufficient to meet the stability and performance requirements of

the CLV[10]. Due to the uncertain nature of a launch vehicle, imprecise knowledge of

system parameters and the flexibility of the CLV rocket during its ascent phase creates

concern that unforeseen instabilities may develop. Time varying factors such as fuel

consumption and mass reduction, combined with a wide range of aerodynamic and

dynamic interactions including payloads, propulsion, inertia, and dynamic pressure,

can affect the overall dynamics of the vehicle during its flight.

Studies over the past few years have suggested that adaptive control techniques

can potentially be beneficial to the flight control system in terms of robustness and

safety[122]. Adaptive control may not only provide a higher level of nominal perfor-

mance, but can also accommodate a greater degree of uncertainty, including active

vibration suppression of uncertain flexible modes[129] and accommodation of par-

tial failures in the flight control system. More specifically, it has been shown that

adaptive control can increase the robust performance of the CLV[88]. However, the

nature of an adaptive control signal raises concern for implementation on a manned

launch vehicle. Since model reference adaptive control laws are inherently high band-

width, high frequency control effort maybe generated that can destabilize unmodeled

dynamics and exceed actuator capabilities. Moreover, if the uncertainty does not
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satisfy matching conditions, the adaptive control law can degrade tracking and even

destabilize the plant.

This major disadvantage of adaptive control stems from the fact that it lacks

an accepted means of quantifying the behavior of the control signal a priori. These

measures are required in order to certify flight control systems of piloted and pas-

senger bearing vehicles. Hence, most adaptive control laws require a more extensive

verification and validation process due to the time varying and nonlinear manner in

which its gains are adapted since the control effort could be beyond the limits of the

system. From this prospective, it is highly desirable to limit the frequency content

of an adaptive control signal. Classic and robust control offer natural frameworks

for achieving frequency limited signals. The H∞-NMA Architecture[90] allows one

to also achieve frequency limited control signals by combining aspects from robust

control theory and adaptive control theory into a single framework. This makes it

possible to limit the frequency content of the adaptive control signal in an algorithmic

manner.

In this chapter, attitude control of the CLV is accomplished using two decou-

pled H∞-NMA state feedback architectures designed to maintain the design level of

tracking performance in the presence of disturbances and parametric uncertainties.

Emphasis is placed on a minimal order adaptive law in order to see if a low band-

width, low gain, and reduced order state feedback control law can offer performance

improvement. This new control architecture merges ideas from H∞ control theory

and adaptive control theory to achieve band limited control signals. This represents

a different approach than previous approaches based on an high order output feed-

back σ-modification adaptive law[88]. To show the viability of the method, a high

fidelity simulation of the CLV(called SAVANT) is used in conjunction with the actual

decentralized classical control design used on the CLV to compare the nominal perfor-

mance against the performance of the CLV with an augmented adaptive law. Rigid
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body, aerodynamics, gravity, sloshing, engine inertia effects, mass change, actuator,

and elastic body models(among other things) are included in the simulation. The

nominal controller consists of three independently designed controllers for yaw, pitch

and roll attitude. The effect of structural modes are compensated for with using gain

and phase stabilization filters in the pitch and yaw channels. The roll control law is

a nonlinear bang-zero-bang design. The presence of the bang-zero-bang control law

requires a special modification to the adaptive law called control hedging in order to

ensure that the nonlinear nature of the roll control law if properly accounted. This

has been shown to work well[88]. However, the roll control channel in the work is

ignored in the adaptive design due to design restrictions from NASA. In implemen-

tation, the original control design is not modified. The adaptive control law simply

augments the nominal control law. This facilitates switching the adaptive control law

on in case of degraded nominal control performance.

Results examine the degree to which the nominal control design can be improved

by adding an adaptive element. To measure the degree of improvement, theWorst-on-

Worst(WoW) Monte-Carlo dispersion cases are compared. The WoW cases capture

the combination of the worst possible uncertainties(i.e. dispersions) occurring simul-

taneously. Simulation results show that the adaptive control law always improves the

performance of all of the stable WoW cases. For the WoW cases that are unstable

with only the linear control law, the adaptive control algorithm is able to maintain

acceptable tracking performance in almost all of the cases.

9.2 Vehicle Model and Dynamics

The Ares I CLV is a two-staged, serially connected rocket with the Orion crew ex-

ploration vehicle located at the top. The launch vehicle’s first stage consists of a

single, five-segment reusable solid rocket booster, and the second or upper stage is

propelled by a main engine fueled with liquid oxygen and liquid hydrogen. The vehicle
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configuration is shown in figure 9.1.

Figure 9.1: Ares I Crew Launch Vehicle

Ares I has two vital missions; lifting astronauts up to the International Space Sta-

tion and achieving an in orbit rendezvous with the Ares V Earth departure stage at

low Earth orbit for a mission to the moon. During the first two and a half minutes of

flight, the first stage booster powers the vehicle to an altitude of about 38 miles and

a speed of Mach 5.9. After its propellant is consumed, the solid rocket booster sepa-

rates. The upper stage engine is then ignited and powers the Orion spacecraft. After

reaching an altitude of 83 miles, the upper stage separates and the Orion spacecraft

completes its trip to a circular orbit of 185 miles above the Earth using its service

module propulsion system.

9.2.1 CLV Model Description

The CLV model employed in this study is called Savant and was developed in a joint

effort between bD Systems and NASA Marshall. The model is described in Betts[9]

and it contains simulated rigid body, aerodynamics, gravity, sloshing, engine inertia

effects, mass change, actuator, and elastic body models. Many of these effects can be

turned on or off in the simulation environment.
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Since the Ares I CLV possesses the characteristics of a long and slender body, its

flexibility should be considered in the control law design. In the structural modeling

part, modal frequencies, displacement, and rotation are given from a Nastran (FEM

solver) solution and is used to model the interaction effects between the vehicle flex-

ibility and the other dynamic models. Lateral vibration is the dominate vibration

mode. It is important to consider the effect of this vibration in control system design

due to the modal frequencies being near the control bandwidth. The vehicle’s elastic

motion can be conveniently expressed in terms of frequencies and mode shapes of a

free-free beam structure. Because of the axial symmetry of Ares I launch vehicle,

two identical modes exist in the lateral bending. Table 9.1 gives a summary of the

approximate dominate bending mode frequencies at launch. The actual modal fre-

quencies are time varying and change significantly through out ascent. Figure 9.2

shows the dominate vehicle mode shapes.

Table 9.1: Bending Frequency Table
1st Bending Frequency 2nd Bending Frequency 3rd Bending Frequency

6.0 [rad/sec] 14.2 [rad/sec] 27.2 [rad/sec]

The aerodynamic model contains three parts; the environment model, the aerody-

namic coefficients, and the force and moment generation algorithm. The time history

of the mass properties including the total vehicle weight and the center of gravity

location is stored in the simulation model in the form of look-up tables. Multiple

gimbal actuator models are available for simulating actuator limits including a 3rd

order model or a high fidelity simplex model. The fuel sloshing model simulates the

effect of fuel sloshing as point masses connected to the rocket body as shown in figure

9.3 to the LOX and LH2 upper stage tanks by a spring and damper in the lateral (Y,

Z) direction. The vertical position of slosh point mass is function of the liquid level

in the tank. Vehicle separation is modeled as an instantaneous loss of mass. The

atmosphere is simulated using the US76 atmosphere model and the gravity model
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Figure 9.2: Visualization of the first three structural mode shapes
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Figure 9.3: Schematic of elastic vehicle with sloshing point mass and engine inertia

used includes Earth oblateness effects without considering abnormality or vertical

deflection data.

9.2.2 Nominal Control Law

The nominal control law tracks quaternion guidance commands. At each time instant,

the quaternion command and the vehicle’s attitude quaternion are used to generate

an attitude error signal. These errors are suppressed using two gain scheduled PID

control laws for the pitch and yaw degrees of freedom and a phase plane roll controller

for the roll degree of freedom. One restriction of the roll RCS is that the actuator

only fires when the roll error of the CLV is greater than a defined parameter (a bang-

zero-bang control law). Each axis is assumed independent so each control channel

is designed separately. The effects of structural modes are gain and phase stabilized

using a combination of gain scheduled low pass and notch filters. Gains are scheduled

based on the altitude. The nominal control architecture is shown in figure 9.4.

The error signal to the nominal control law is generated based on a quaternion

command signal. A comparison between the command and the current vehicle quater-

nion state generates an error angle state that is used for feedback. This error angle
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Figure 9.4: Diagram of nominal control system

state is the incremental Euler angle rotation from the current system state to the cur-

rent command. To define this error angle signal, suppose that there are two frames,

frame 1 and frame 2. One can describe the rotation from frame 1 to frame 2 in terms

of an axis and an angle to rotate around that axis. This representation can be used to

define the quaternions used in this chapter. The following definition of the quaternion

vector based on an axis-angle formulation is used.

qaxis−angle =



cos(ξ/2)

axsin(ξ/2)

aysin(ξ/2)

azsin(ξ/2)


(9.1)

where a is a unit vector in Cartesian space such that a rotation, ξ, about a will rotate

frame 1 to frame 2. It is assumed that the quaternion has unit length such that

∥qaxis−angle∥ = 1.

In order to formulate an error signal based on quaternions, an error angle vec-

tor based on the deviation between the command and the system state vector is
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computed. Suppose the quaternion command is represented by qc and the system

quaternion state is given by q. Then the quaternion representing the error between

these two quaternion vectors is given by[63]

qe = q−1
c ⊗ q =



q1qc1 + q2qc2 + q3qc3 + q4qc4

q2qc1 − q1qc2 − q4qc3 + q3qc4

q3qc1 + q4qc2 − q1qc3 − q2qc4

q4qc1 − q3qc2 + q2qc3 − q1qc4


(9.2)

Applying a quaternion-to-Euler angle transformation for a z-axis, y-axis, and x-axis

sequence, one can compute the this error vector in terms of Euler angles:

ϕe = arctan

[
2 (qe3qe4 + qe1qe2)

2 (qe1qe1 + qe4qe4)− 1

]
θe = arcsin [2 (qe1qe3 − qe2qe4)]

ψe = arctan

[
2 (qe2qe3 + qe1qe4)

2 (qe1qe1 + qe2qe2)− 1

]
If the error between qc and q is small, the sign of qe1 can be taken as positive. In this

case, one can apply a small angle approximation. For quaternions, this implies that

qe1 ≈ 1

∥qe2∥ ≪ 1

∥qe3∥ ≪ 1

∥qe4∥ ≪ 1

(9.3)

This can be seen be simply examining the axis-angle formulation of a quaternion.

With this assumption, one can approximate the error angles as

ϕe ≈ 2qe1qe2

θe ≈ 2qe1qe3

ψe ≈ 2qe1qe4

(9.4)

This error is fed into the nominal control law along with the components of the body

angular rate vector, ω, to compute the control signals in the roll, pitch, and yaw axes.
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9.2.3 H∞-NMA Architecture Formulation

This section formulates a low-order decoupled H∞-NMA architecture for the CLV.

The dynamics for the adaptive law design can be derived by considering the general

attitude control problem. In this problem, the plant dynamics can be approximately

captured as

q̇ = Γ(q, ω)

ẋ = σ(q, x, ω, δ)

ω̇ = f(q, x, ω) +Bδ

where q is the quaternion representing the inertial attitude, ω is the angular velocity,

x are the position and velocity dynamics, B is a diagonal control effectiveness matrix,

δ is the control action, and

q̇ = Γ(q, ω) =
1

2



−q2 −q3 −q4

q1 −q4 q3

q4 q1 −q2

−q3 q2 q1


ω =

1

2
Ωqω (9.5)

The control effectiveness matrix is assumed diagonal due to the restriction that the

control law be decoupled. If one wanted to couple the adaptive control design, this

restriction could be removed.

The quaternion guidance command to the attitude control system is open loop[46]

and slowly varying. Since, the quaternion is slowly varying, it is assumed that

q̇c ≈ 0

This assumption allows one to formulate the CLV attitude control problem as a

stabilization problem. To this end, the attitude dynamics are reexpressed relative to

the slowly varying attitude command, qc. The quaternion attitude error was expressed

in equation (9.2) as

qe = q−1
c ⊗ q
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Since q̇c ≈ 0, the time derivative of qe is given by

q̇e = q−1
c ⊗ q̇

=
1

2
q−1
c ⊗ Ωqω

The quaternion attitude can be expressed as

q = qc ⊗ qe

Hence,

q̇e =
1

2
q−1
c ⊗ Ωqc⊗qeω

Using quaternion algebra,

qc ⊗ qe =



qc1qe1 − qc2qe2 − qc3qe3 − qc4qe4

qc1qe2 + qc2qe1 + qc3qe4 − qc4qe3

qc1qe3 − qc2qe4 + qc3qe1 + qc4qe2

qc1qe4 + qc2qe3 − qc3qe2 + qc4qe1


where qci is the i

th element of qc and qei is the i
th element of qe. From equation (9.5),

Ωqc⊗qe is

Ωqc⊗qe =



− (qc ⊗ qe)2 − (qc ⊗ qe)3 − (qc ⊗ qe)4

(qc ⊗ qe)1 − (qc ⊗ qe)4 (qc ⊗ qe)3

(qc ⊗ qe)4 (qc ⊗ qe)1 − (qc ⊗ qe)2

− (qc ⊗ qe)3 (qc ⊗ qe)2 (qc ⊗ qe)1


where (qc ⊗ qe)i is the ith element of qc ⊗ qe. Since, qc is a unit quaternion, q−1

c is

given by

q−1
c =



qc1

−qc2

−qc3

−qc4


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From this, after some algebra, the qe dynamics in equation (9.6) can be expressed as

q̇e =
1

2



−qe2 −qe3 −qe4

qe1 −qe4 qe3

qe4 qe1 −qe2

−qe3 qe2 qe1


ω =

1

2
Ωqeω (9.6)

Assuming that ω remains small and applying the small angle properties of qe in

equation (9.3), the qe dynamics can be approximated as

q̇e ≈
1

2

 0

ω


From the definition of the error angles in equation (9.4),

ϕ̇e

θ̇e

ψ̇e

 ≈ ω (9.7)

Let the state vector for the H∞-NMA architecture in figure 9.5 be defined as

ē =



ϕe

θe

ψe

ω


(9.8)

Using this definition, the system dynamics can be approximated as

˙̄e =

 ω

fc(q, x, ω) +Bδ

 (9.9)

where the remaining vehicle dynamics (position and velocity) are unmodified in the

form as previously defined as

ẋ = σ(q, x, ω, δ)
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With qc regarded as nearly constant, the error dynamics in equation (9.9) can be

rewritten as

˙̄e =

 ω

fc(qe, x, ω)

+ B̄δ (9.10)

where fc(·) is the equivalent form of f(·) as a function of qe instead of q and

B̄ =

 0

B


The total augmented control effort is defined as

δ(t) = δn(t)− δad(t) (9.11)

where δn(t) is the nominal control output and δad(t) is the augmented adaptive signal.

It is assumed that the linear control law was designed to achieve a second order

response in each control channel. Based on the definition in equation (9.11), it is

assumed that the application of the nominal control law, has the effect of creating

the following approximate form for the error dynamics in equation (9.10)

˙̄e(t) = Amē(t)− B̄δad(t) + B̄∆(ē(t)) (9.12)

where ∆(ē(t)) is the modeling error that exists between the desired dynamics and the

actual dynamics and

Am =

 0 I

−K̄p −K̄d



K̄p =


kp 0 0

0 kq 0

0 0 kr

 and K̄d =


bp 0 0

0 bq 0

0 0 br


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ki and bi are chosen to match the damping and stiffness associated with the desired

second order response of the gain scheduled CLV control system design. These as-

sumed dynamics match the form of the dynamics in Chapter 4 in equation (4.7) with

Bm = 0. Hence, one could use these dynamics to formulate a coupled H∞-NMA

architecture based on Chapter 4 for the CLV.

In order to maintain a decoupled adaptive design, it is assumed that ∆(ec(t)) is a

diagonal uncertainly of the form

∆(ē(t)) =


∆1(ϕe, p) 0 0

0 ∆2(θe, q) 0

0 0 ∆3(ψe, r)

 (9.13)

This allows the dynamics of each control channel to be expressed as

ẋi(t) = Ami
xi(t)−Biδadi(t) +Bi∆i(xi) (9.14)

where i represents the ith control channel, i = 1 corresponds to the roll channel, i = 2

corresponds to the pitch channel, i = 3 corresponds to the yaw channel, x1 = [ϕe p]T ,

x2 = [θe q]T , x3 = [ψe r]T , Bi = [0 B(i, i)]T , and Ami
is defined as

Ami
=

 0 1

−ki −bi

 (9.15)

Only the pitch and yaw channel are augmented with an adaptive control law. The

state emulator for these adaptive laws can be thought of as an error state emulator

because the state vector is based on the attitude command error, qe, and the angular

velocity, ω. Note that there is no reference command in the dynamics in equation

(9.14). This implies that, unless there is an initial attitude error and/or an angular

rate, the reference model does not need to be implemented. In this case, the H∞-

NMA architecture simplifies. Comparing with figure 4.1, the architecture in each

channel reduces as shown in figure 9.5. In this case, from the error definitions in

Chapter 4, the state emulator error for the ith channel is êi(t) = xi(t) − x̂i(t) and
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the state emulator tracking error for the ith channel is ei(t) = −x̂i(t). In this figure,

Kx represents the nominal control system for the ith channel which feeds back on the

same error state, xi(t).

Figure 9.5: H∞-NMA architecture simulation diagram for the CLV.

9.3 Simulation Results

The adaptive system and the nominal control system is implemented in discrete time

with an update rate of 50 Hz. All system latency and actuator limitations are mod-

elled. The actuator command from the control system is in terms of a roll RCS

command, a pitch angle command to the gimbal, and a yaw angle command to the

gimbal. However, the actual gimbal control signal is a tilt and rock command. The

tilt and rock command is computed based on the following equation. utilt

urock

 =

 cos(ϕTR) sin(ϕTR)

−sin(ϕTR) cos(ϕTR)


 δpitch

δyaw


where ϕTR is rotation angle of the tilt-rock gimbal, utilt is the tilt angle command,

urock is the rock angle command, δpitch is the control system gimbal pitch command,

and δyaw is the control system gimbal yaw command.
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The H∞-NMA design was meant to be minimum complexity. Therefore the vector

β(xi) was chosen as

β(xi) =

 a

xi


where a is a user defined constant and xi is the corresponding state vector of the ith

channel in equation (9.14). It was assumed that the desired response is equivalent to

choosing a damping ratio of ζ = 0.707 and an undamped natural frequency of ωn = 5

rad/sec in both the pitch and yaw control channel. This implies that the stiffness

and damping parameters of Ami
should be defined by

ki = ω2
n and bi = 2ζωn

The adaptive gain was simply set to Γ = 30. The linear H∞ design was augmented

with an integrator. The augmented state vector used for each design was

x̄ =

 xinti

xi


where xinti is the integrator state. Using this augmented state vector, the design

strategy in section 4.4 was followed. In each design, the design matrices Q
1
2 and R

1
2

were chosen as

Q
1
2 = I and R

1
2 = 0.025

This selection of weighting matrices suggests that the tilt-rock actuator should have

at least a 3 Hz bandwidth.

The simulation results focus on the mean international space station mission and

examine the degree to which the nominal control design can be improved by adding

a decoupled state feedback adaptive element described in the previous sections. To

measure this degree of improvement, tracking performance is compared between the
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baseline control performance and the H∞-NMA architecture performance for the

Worst-on-Worst(WoW) Monte-Carlo dispersion cases. The WoW cases capture the

combination of the worst possible uncertainties(i.e. dispersions) occurring simulta-

neously. Simulations show that the adaptive control law always improves the perfor-

mance of all of the stable WoW cases. Results show that system tracking errors and

measures of structural stress are reduced. In many examples of adaptive control law

implementation, the control laws exhibit increased control effort. This could be detri-

mental to the performance of a launch vehicle. However, in all of the WoW cases, the

total control activity between the adaptive cases and the linear control cases remain

approximately the same(as measured by duty cycle and duty cycle rate). Moreover,

in the case of rock duty cycle rate, control activity is generally reduced. For the

WoW cases that are unstable with only the linear control law, the adaptive control

algorithm is able to maintain acceptable tracking performance in almost all of the

cases while control effort remains consistent with other dispersion cases.

In comparing performance of the adaptive control system algorithm with the base-

line flight control system, parameters that characterize attitude tracking, use of ef-

fectors, loads, and errors at the time of first stage separation were captured from the

simulations and evaluated. Performance emphasis is on loads and attitude control.

These metrics are listed below.

• Total Q-Alpha - Square root of the sum of Q-Alpha (aerodynamic pressure

multiplied by angle of attack) and Q-Beta (aerodynamic pressure multiplied by

side slip angle). Reduction of this is desirable in all cases since it represents

aerodynamic loading on the vehicle, therefore it is heavily weighted.

• Attitude errors - roll, pitch, and yaw errors (command minus sensed) before

filtering. This is coupled with total Q-Alpha during high Q since guidance is

essentially commanding zero aerodynamic angles in this region of flight. Due

to thrust vector dispersions, pitch and yaw couple into roll and affects RCS
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propellant consumed.

• Total nozzle gimbal angle - The maximum value should be maintained below

the specified value due to hardware capability. This metric is heavily weighted

since exceeding capability could result in loss of the vehicle.

• Gimbal duty cycle - area under the total nozzle angle curve as defined by

Duty Cycle(t) =

∫ t

0

(Nozzle Gimbal Angle) dt

This is not heavily weighted, recognizing the fact that utilizing the effectors

more aggressively may be necessary to achieve better results.

• Gimbal rate duty cycle - number of sign changes in both the rock and tilt

actuator rates. This metric is needed to evaluate actuator chatter. It is not

heavily weighted.

• Body rates (truth, not measured) at separation. Roll rate is not as important

as pitch and yaw. Large rates can cause interference between first stage and

interstage hardware. Pitch and yaw are weighted more heavily than roll.

To capture these factors, a scoring metric was developed. Success was judged

based upon increasing the maximum values of the performance metrics. Simulations

were made with the baseline flight control system and the adaptive control system

using the same set of dispersions. For each simulation, a scaling, S(i), for each metric

is computed. This value is given by

S(i) = 1 +
B(i)−M(i)

B(i)
(9.16)

This expression is based on a percentage difference in the bounding values, B(i),

and the maximum value of each metric during a simulation run, M(i). Below are

bounding values and the weights for the performance metrics used to score each of

the simulations(values were suggested by NASA).
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The score for each metric is

Score(i) =W (i)S(i) (9.17)

and the total score for each simulation is

Total Score =
∑
i

Score(i) (9.18)

The metric score has improved if the total score increases.

The H∞-NMA adaptive control architecture improves the metric score for all of

the Worst-on-Worst cases in which the baseline control law is stable. Figures 9.6

and 9.7 show the raw metric scores for the H∞-NMA architecture and the baseline

control law. There are 100 WoW cases. Case numbers without data represent a

case where the baseline control law is unstable (no comparison can be made). A

case is considered unstable if the roll error exceeds 10◦, the pitch error exceeds 5◦,

or the yaw error exceeds 5◦. For the baseline linear control law, WoW cases 7, 10,

46, 47, and 82 are unstable. For the adaptive control law, only cases 46 and 82 are

unstable. Figure 9.8 shows the percentage improvement in the performance metric

Table 9.2: CLV Metric Bounding Values
Metric, M(i) Bounding Value, B(i)

Total Q-alpha 5500 psf
◦

Attitude errors (absolute values) Roll-20◦, Pitch-3◦, and Yaw-3◦

Total nozzle gimbal angle 4◦

Gimbal duty cycle 193 ◦
sec

Gimbal rate duty cycle Rock-30 cycles, Tilt-30 cycles
Body rates at separation (absolute values) Roll-60 ◦

sec
, Pitch-5 ◦

sec
, Yaw-5 ◦

sec

Table 9.3: CLV Metric Weights
Metric, M(i) Weight, W (i)
Total Q-alpha 5

Attitude errors (absolute values) Roll-2, Pitch-3, and Yaw-3
Total nozzle gimbal angle 5

Gimbal duty cycle 2
Gimbal rate duty cycle Rock-2, Tilt-2

Body rates at separation (absolute values) Roll-2, Pitch-5, Yaw-5
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for the adaptive control system compared to the corresponding baseline control case.

Figure 9.9 shows the percentage improvement in the performance metric when the

first 20 seconds is excluded from the metric calculation.

Next the time history of each WoW dispersion is compared. In all of the following

fiugres, the unstable cases for both the adaptive and baseline control law are not

shown for clarity. Figures 9.10 - 9.12 show the attitude error for each stable baseline

and adaptive control case. In each case, roll error between each baseline and adaptive

case stays about the same but this isn’t surprising because the roll control law is

not augmented with an adaptive element. The peaks in the pitch and yaw error is

generally reduced using the adaptive controller. Figures 9.13 and 9.14 show the angle

of attack and sideslip respectively. These plots show that peaks in both quantities

are generally reduced. Figures 9.15 - 9.17 show plots of variables related to structural

stress. Once again, in each case, peaks are reduced. Figures 9.18 and 9.19 show the

rock and tilt command respectively. In these figures, the total control effort remains

approximately the same. This is good because in many applications of adaptive

control, control activity tends to increase relative to the linear baseline design. Figures

9.20 - 9.23 show the duty cycle and duty cycle rate for the tilt and rock actuators

during each simulation run. While the measures of duty cycle remain approximately

the same, it is notable that the tilt and rock duty cycle rate decreases as a general

trend.

9.4 Conclusions

An H∞-NMA architecture for the Crew Launch Vehicle was developed in a state

feedback setting. The minimal complexity adaptive law was shown to improve base

line performance relative to a performance metric based on Crew Launch Vehicle

design requirements for all most all of the Worst-on-Worst dispersion cases. The

adaptive law was able to maintain stability for some dispersions that are unstable
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with the nominal control law. Due to the nature of the H∞-NMA architecture, the

augmented adaptive control signal has low bandwidth which is a great benefit for a

manned launch vehicle.
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Figure 9.6: Raw metric score values for the stable baseline control WoW cases.
Black is the adaptive control law and grey is the baseline control law.
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Figure 9.7: Raw metric score values after 20 seconds. Black is the adaptive control
law and grey is the baseline control law.

303



0 20 40 60 80 100
0

5

10

15

20

25

30

P
er

ce
nt

 Im
pr

ov
em

en
t i

n 
M

et
ric

 S
co

re

WoW Case Number

Figure 9.8: Summary of metric score improvements for stable WoW cases.
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Figure 9.9: Summary of metric score improvements for stable WoW cases after the
first 20 seconds.
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Figure 9.10: CLV roll error comparison. Black lines represent the baseline responses
and red lines represent the H∞-NMA responses.
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Figure 9.11: CLV pitch error comparison. Black lines represent the baseline re-
sponses and red lines represent the H∞-NMA responses.
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Figure 9.12: CLV yaw error comparison. Black lines represent the baseline responses
and red lines represent the H∞-NMA responses.
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Figure 9.13: CLV angle of attack comparison. Black lines represent the baseline
responses and red lines represent the H∞-NMA responses.
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Figure 9.14: CLV sideslip comparison. Black lines represent the baseline responses
and red lines represent the H∞-NMA responses.
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Figure 9.15: CLV Q − α comparison. Black lines represent the baseline responses
and red lines represent the H∞-NMA responses.
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Figure 9.16: CLV Q − β comparison. Black lines represent the baseline responses
and red lines represent the H∞-NMA responses.
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Figure 9.17: CLV Q − α total comparison. Black lines represent the baseline
responses and red lines represent the H∞-NMA responses.

308



0 20 40 60 80 100 120
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time (sec)

R
oc

k 
C

om
m

an
d

Figure 9.18: CLV rock command comparison. Black lines represent the baseline
responses and red lines represent the H∞-NMA responses.
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Figure 9.19: CLV tilt command comparison. Black lines represent the baseline
responses and red lines represent the H∞-NMA responses.
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Figure 9.20: CLV rock duty cycle comparison. Black lines represent the baseline
responses and red lines represent the H∞-NMA responses.
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Figure 9.21: CLV tilt duty cycle comparison. Black lines represent the baseline
responses and red lines represent the H∞-NMA responses.
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Figure 9.22: CLV rock duty cycle rate comparison. Black lines represent the baseline
responses and red lines represent the H∞-NMA responses.
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Figure 9.23: CLV tilt duty cycle rate comparison. Black lines represent the baseline
responses and red lines represent the H∞-NMA responses.
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