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ABSTRACT

This paper presents the design, analysis, and real-time experi-
mental evaluation results of a nonlinear sensor fault diagnosis
scheme for quadrotor unmanned air vehicles (UAV). The ob-
jective is to detect, isolate, and estimate sensor bias faults in
accelerometer and gyroscope measurements. Based on the
quadrotor dynamics and sensor models under consideration,
the effects of sensor faults are represented as virtual actuator
faults in the quadrotor state equation. Two nonlinear diag-
nostic estimators are designed to provide structured residu-
als for fault detection and isolation. Additionally, after the
fault is detected and isolated, a nonlinear adaptive estimation
scheme is employed for estimating the unknown fault mag-
nitude. The proposed fault diagnosis scheme is capable of
handling simultaneous faults in the accelerometer and gyro-
scope measurements. The effectiveness of the fault diagnosis
method is demonstrated using an indoor real-time quadrotor
UAV test environment.

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have attracted significant
attentions in the recent decade due to their potentials in vari-
ous military and civilian applications, including security pa-
trol, search and rescue in hazardous environment, surveil-
lance and classification, attack and rendezvous (Shima & Ras-
mussen, 2008). In addition, compared with manned systems,
the reductions in operations and support costs offer the advan-
tage for life cycle cost savings (US Dept. of Defense, 2012).
The potential capabilities offered by unmanned vehicles have
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been well recognized and continue to expand. In manned sys-
tems, the human operator functions as the central integrator of
the on-board systems to achieve their operational capabilities.
Due to the requirement of autonomous operations without a
human operator, autonomous control of UAVs is much more
challenging. In order to enhance the reliability, survivabil-
ity, and autonomy of UAVs, advanced intelligent control and
health management technologies are required (Y. Zhang et al.,
2013; Vachtsevanos, Tang, Drozeski, & Gutierrez, 2005).

Quadrotors are often equipped with low-cost and lightweight
micro-electro-mechanical systems (MEMS) inertial measure-
ment units (IMU) including 3-axis gyroscope, accelerometer
and magnetometer. These sensors serve an essential role in
most quadrotor control schemes. However, IMU measure-
ments are susceptible to sensor bias faults as a result of tem-
perature variation, vibration, component damage, etc.

Despite a steady growth of quadrotor applications, on-board
sensor fault diagnosis has received limited consideration. Most
fault diagnosis methods with application to quadrotors deal
exclusively with actuator faults (Y. Zhang et al., 2013). Addi-
tionally, small UAV sensor fault diagnosis methods found in
literature are often designed based on linearized system mod-
els around certain equilibrium points using linear observers
or Kalman filters. However, quadrotor dynamics are inher-
ently nonlinear, especially during dynamic transient opera-
tions. Therefore, there is significant research interest in fault
diagnosis methods that are directly based on the intrinsic non-
linearities of quadrotor dynamics. The extended Kalman fil-
ter (EKF) is a commonly used method to deal with nonlinear
systems. However, a stability analysis for EKF applied to
parameter estimation of nonlinear systems is very difficult.
Furthermore, there have been very limited real-time experi-
mental results on quadrotor sensor fault diagnosis (Y. Zhang
et al., 2013; Freddi, Longhi, & Monteriú, 2009).

In this paper, a nonlinear method for detecting, isolating, and
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estimating sensor bias faults in accelerometer and gyroscope
measurements of quadrotor UAVs is presented. The stabil-
ity and convergence properties of the adaptive fault param-
eter scheme is also analyzed. Based on the fact that the ac-
celerometer and gyroscope measure the specific forces/angular
rates acting on the UAV body, the quadrotor dynamics are
represented in terms of IMU measurements. Specifically, the
measurements provided by the accelerometer are expressed
as inputs in the quadrotor translational dynamics, and the
measurements provided by the gyroscope are expressed as in-
puts in the quadrotor rotational dynamics. Thus, the measure-
ments provided by the IMU sensors are represented as virtual
actuators in the quadrotor dynamics, and the effects of IMU
sensor biases are treated as virtual actuator faults. Two robust
diagnostic estimators are designed to provide structured fault
detection and isolation (FDI) residuals enabling the detection
and isolation of simultaneous gyroscope and accelerometer
sensor faults. In addition, by utilizing nonlinear adaptive es-
timation techniques (X. Zhang, Polycarpou, & Parsini, 2001;
Bastin & Gevers, 1988), adaptive estimators are employed to
provide an estimate of the unknown sensor bias. The stabil-
ity and parameter convergence properties of the adaptive es-
timation scheme are analyzed in the presence of sensor mea-
surement noise. The sensor fault diagnosis method is imple-
mented using a real-time indoor quadrotor test environment.
Real-time experimental results are shown to illustrate the ef-
fectiveness of the diagnostic method.

The remainder of the paper is organized as follows. Sec-
tion 2 formulates the problem of sensor FDI for quadrotor
UAVs. The proposed fault detection and isolation method
is presented in Section 3. Section 4 describes the adaptive
algorithms for estimating sensor bias magnitude. Section 5
describes the real-time quadrotor test environment and some
experimental results to demonstrate the effectiveness of the
method. Finally, conclusions and directions of future research
are given in Section 6.

2. PROBLEM FORMULATION

Several researchers have investigated quadrotor modeling, aim-
ing for high fidelity models by including drag force, Coriolis
effects, blade flapping effects, rotor dynamics, etc. (Castillo,
Lozano, & Dzul, 2005; Pounds, Mahony, & Gresham, 2004;
Bangura & Mahony, 2012). Accurate modeling plays an im-
portant role in quadrotor control, especially in the case of ag-
gressive maneuvers, tight group formations, etc. However,
when the quadrotor is in a non-aggressive flight, these effects
become very small in comparison to gravitational pull and
thrust generated by the rotors. As in (Leishman, McDonald,
Beard, & McLain, 2014; Martin & Salaün, 2010), the dy-
namic model used in this paper considers the gravity, thrust
generated by the rotors, and drag forces acting on the quadro-
tor body. The quadrotor nominal system dynamics derived

from the Newton-Euler equations of motion are given by:

ṗE = vE (1)

v̇E =
1

m
REB(η)

 0
0
−U

− fD

+

0
0
g

 (2)

η̇ =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

ω (3)

ṗq̇
ṙ

 =


Jy−Jz
Jx

qr
Jz−Jx
Jy

pr
Jx−Jy
Jz

pq

+

 1
Jx
τφ

1
Jy
τθ

1
Jz
τψ

 , (4)

where pE ∈ R3 is the inertial position, vE ∈ R3 is the veloc-
ity expressed in the Earth frame, η = [φ, θ, ψ]T are the roll,
pitch and yaw Euler angles, respectively, and ω = [p, q, r]T

represents the angular rates, m is the mass of the quadrotor,
and g is the gravitational acceleration. The terms Jx, Jy and
Jz represent the quadrotor inertias about the body x-, y- and
z-axis, respectively. Note that the quadrotor is assumed to be
symmetric about the xz and yz body planes (i.e. the product
of inertias is zero). U represents the total thrust generated by
the rotors, τφ, τθ, τψ are the torques acting on the quadrotor
around the body x-, y- and z-axis, respectively. Finally, the
term fD represents the translational drag force acting on the
vehicle frame.

The system model described by Eq. (1) - Eq. (4) is expressed
with the velocity relative to the inertial frame. The inertial co-
ordinate system is assumed to have the positive x-axis point-
ing North, the positive y-axis pointing East, and positive z-
axis pointing down towards the Earth’s center. The transfor-
mation from the body frame to inertial frame is given by the
rotation matrix REB and is defined based on a 3-2-1 rotation
sequence as follows:

REB(η) =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


where s· and c· are shorthand notations for the sin(·) and
cos(·) functions, respectively. As in (Leishman et al., 2014),
by assuming that the nonlinear Coriolis terms are small enough
to be negligible, the quadrotor velocity dynamics relative to
the body frame are expressed as:u̇xu̇y

u̇z

 =
1

m

 0
0
−T

− fD

+

 −g sin θ
g sinφ cos θ
g cosφ cos θ

 , (5)

where vB , [ux, uy, uz]
T , represents the velocities along

the body x−, y− and z− directions. The relationship be-
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tween the inertial velocity and body velocity is given by:

vE = REBvB .

As in (Freddi et al., 2009; Ireland & Anderson, 2012; Lantos
& Marton, 2011), it is assumed that Euler angles measure-
ments are available. For instance, these measurements can be
generated by a camera-based motion capture system, a tech-
nology commonly employed for in-door UAV flight (Leishman
et al., 2014; Ireland & Anderson, 2012; Guenard, Hamel, &
Mahony, 2008; Dydek, Annaswamy, & Lavretsky, 2013).

MEMS sensors, such as accelerometers and gyroscopes, mea-
sure forces and moments acting in the body frame. By con-
sidering IMU measurements susceptibility to bias faults, the
accelerometer and gyroscope sensor measurements are given
by:

ya = a+ βa(t− ta)ba + na (6)
yω = ω + βω(t− tω)bω + nω (7)

where ya ∈ R3 and yω ∈ R3 are the accelerometer and gy-
roscope measurements, respectively, ba ∈ R3 and bω ∈ R3

represent sensor bias faults in accelerometer and gyroscope
measurements, respectively, the terms na and nω represent
the measurement noise, and:

a =
1

m

 0
0
−U

− fD

 . (8)

represents the nominal acceleration measurement without bias
and noise. Additionally, βa(·) and βω(·) are fault time profile
functions with unknown fault occurrence times ta and tω , re-
spectively. In this paper, they are modeled as step functions
given by:

βa(t− ta) =

{
0 , when t < ta
1 , when t ≥ ta

βω(t− tω) =

{
0 , when t < tω
1 , when t ≥ tω

It is assumed that the position measurements in the Earth
frame are available. Hence, the system model is augmented
by the following output equation:

yp = pE + dp (9)

where dp represents zero mean position measurement noise.

Assumption 1. The sensor biases ba and bω in Eq. (6) and
Eq. (7) are assumed to be constant and bounded.

Assumption 2. The sensor measurement noises, denoted by
na, nω and dp in Eq. (6), Eq. (7), and Eq. (9), respectively,
are assumed to be bounded zero mean signals. That is:

E(na) = 0, E(nω) = 0, E(dp) = 0,

where E represents the expectation operator.

Remark 1. It is worth noting that, in practical applications,
after the occurrence of an IMU sensor bias, its magnitude
may be time-varying and grow slowly over time. However,
the change in the bias is often small over a short time dura-
tion. Therefore, the bias may be assumed to be constant on
the short time duration under consideration.

The objective of this research focuses on the design, analysis,
and experimental demonstration of a robust fault detection,
isolation, and estimation scheme for sensor bias faults in ac-
celerometer and gyroscope measurements described by Eq.
(6) and Eq. (7).

3. FAULT DETECTION AND ISOLATION METHOD

This section presents the proposed method for detecting and
isolating sensor faults in accelerometer and gyroscope mea-
surements. Substituting the sensor model given by Eq. (6)
- Eq. (7) into the systems dynamics Eq. (1) - Eq. (4), we
obtain:

ṗE = vE (10)

v̇E = REB(η)ya +

0
0
g

−REB(η)βaba −REBna (11)

η̇ = Rη(φ, θ)yω −Rη(φ, θ)βωbω −Rη(φ, θ)nω (12)

ω̇ =


Jy−Jz
Jx

(yq−βωbq−dq)(yr−βωbr− dr)
Jz−Jx
Jy

(yr−βωbr−dr)(yp−βωbp− dp)
Jx−Jy
Jz

(yp−βωbp−dp)(yq−βωbq−dq)

+

 1
Jx
τφ

1
Jy
τθ

1
Jz
τψ


(13)

where Rη(φ, θ) is the rotation matrix relating angular rates to
Euler angle rates and is given by:

Rη(φ, θ) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

 .
As can be seen from Eq. (10) - Eq. (13), a bias in accelerome-
ter measurements affects only the position and velocity states.
On the other hand, gyroscope measurements affect only Euler
angles and angular rate states. Based on this observation, the
effect of a bias in either sensor measurements can be treated
as a virtual actuator fault. In addition, due to the decoupling
of the two sensor faults in the quadrotor state equations, it fol-
lows naturally to also divide the fault diagnosis tasks of these
two types of sensor faults. The proposed fault diagnosis ar-
chitecture is shown in Figure 1. As can be seen, under normal
operating conditions, two FDI estimators monitor the system
for detecting and isolating fault occurrences in accelerome-
ter and gyroscope measurements. Once a fault is detected
and isolated, the corresponding nonlinear adaptive estimator
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Figure 1. Sensor fault diagnosis architecture.

is activated for sensor bias estimation.

3.1. Gyroscope Fault Diagnostic Estimator

Based on Eq. (12), the fault diagnostic estimator for the gy-
roscope bias can be designed as follows:

˙̂η = −Λ1(η̂ − η) +Rη(φ, θ)yω , (14)

where η̂ ∈ R3 are the Euler angle estimates, and Λ1 ∈ R3×3

is a positive-definite diagonal design matrix. Let the Euler
angle estimation error be defined as:

η̃ , η − η̂ . (15)

Based on Eq. (12), Eq. (14) and Eq. (15), the dynamics of
the attitude angle estimation error are given by:

˙̃η = η̇ − ˙̂η = −Λ1η̃ −Rη(φ, θ)βωbω −Rη(φ, θ)nω . (16)

In the absence of a gyroscope fault (i.e. for t < tω), the
attitude angle estimation error is given by:

η̃(t) = e−Λ1(t−tω)η̃(0)−
∫ t

0

e−Λ1(t−τ)Rη(φ, θ)nωdτ

= rω(t) + eω(t) (17)

where rω(t) , e−Λ1(t−tω)η̃(0) converges exponentially to
zero, and

eω(t) , −
∫ t

0

e−Λ1(t−τ)Rη(φ, θ)nωdτ

represents an additive zero mean noise term generated by fil-
tering the measurement noise nω through the following stable
linear filter:

ėω = −Λ1eω −Rη(φ, θ)nω .

Therefore, E(η̃) converges exponentially to zero in the ab-
sence of faults. In addition, based on Eq. (16), it can be seen
that the residual η̃ is only sensitive to gyroscope sensor bias
bω . Thus, if E(η̃) is significantly different from zero, it can
be concluded that a fault in the gyroscope measurements has
occurred.

3.2. Accelerometer Fault Diagnostic Estimator

The translational dynamics of the quadrotor described by Eq.
(10) and Eq. (11) can be rewritten as follows:

ẋ = Ax+ f(η, ya) +Ga(η)βaba +Da(η, t)

y = Cx+ dp
(18)

where x = [pTE , v
T
E ]T , y = pE ,

A =

[
03×3 I3
03×3 03×3

]
, Ga(η) =

[
03×3

−REB

]
,

f(η, ya) =


03×1

REBya +

0
0
g


 , Da(η, t) =

[
03×1

−REBna

]
,

and C = [I3, 03×3], where I3 is a 3× 3 identity matrix, 03×3

is a 3 × 3 matrix with all entries zeros, and 03×1 is a 3 × 1
zero vector. Based on Eq. (18), the following fault diagnostic
observer is chosen:

˙̂x = Ax̂+ f(η, ya) + L1(y − ŷ)

ŷ = Cx̂
(19)

where x̂ ∈ R6 represents the inertial position and velocity
estimation, ŷ ∈ R3 are the estimated position outputs, L1 is a
design matrix chosen such that the matrix Ā1 , (A − L1C)
is asymptotically stable. Note that (A ,C) is an observable
pair.

Let us define the position estimation error as:

ỹ , y − ŷ , (20)

and the state estimation error as:

x̃ , x− x̂ . (21)

By using equations Eq. (18) - Eq. (19), the estimation error
dynamics are given by:

˙̃x = Ā1x̃+Ga(η)βaba +Da(η, t)− L1dp

ỹ = Cx̃+ dp .
(22)

In the absence of accelerometer bias (i.e. for t < ta), the
position estimation error is given by:

ỹ=CeĀ1(t−ta)x̃(0)+C

∫ t

0

eĀ1(t−τ)(Da(η, t)−L1dp)dτ+dp

= ra(t) + ea(t) + dp , (23)

where ra(t) , CeĀ1(t−ta)x̃(0) converges exponentially to
zero, and

ea(t) , C

∫ t

0

eĀ1(t−τ)(Da(η, t)− L1dp)dτ
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represents an additive zero mean noise term generated by fil-
tering na and dp through the following stable linear filter:

ėa = Ā1ea +
(
Da(η, t)− L1dp

)
.

Clearly, E(ỹ) reaches zero exponentially in the absence of the
accelerometer bias ba. Furthermore, it can be seen from Eq.
(22), the residual ỹ is only sensitive to the bias ba. Therefore,
if any component of E(ỹ) deviates significantly from zero,
it can be concluded that a fault in the accelerometer sensor
measurement has occurred.

3.3. Fault Detection and Isolation Decision Scheme

As described in Sections 3.1 and 3.2, the two fault diagnostic
estimators are designed such that each of them is only sensi-
tive to one type of sensor faults. Based on this observation,
the residuals η̃ and ỹ generated by Eq. (17) and Eq. (23) can
also be used as structured residuals for fault isolation. More
specifically, the following fault detection and isolation deci-
sion scheme is formulated:

• In the absence of any faults, all components of E(η̃) and
E(ỹ) should be close to zero.

• If all components of E(η̃) remain around zero, and at
least one component of E(ỹ) is significantly different
from zero, then it can be concluded that an accelerom-
eter fault has occurred.

• If all components of E(ỹ) remain around zero, and at
least one component of E(η̃) is significantly different
from zero, then it can be concluded that a gyroscope fault
has occurred.

• If at least one component of E(η̃) and at least one com-
ponent of E(ỹ) are both significantly different from zero,
then it can be concluded that both a gyroscope and an
accelerometer sensor measurement fault has occurred.

The above FDI decision scheme is summarized in Table 1,
where “0” represents residuals with zero mean, and “1” rep-
resents significantly non-zero residuals.

Table 1. Fault Isolation Decision Truth Table.

No Fault Gyro Bias Accel Bias Accel & Gyro
Bias

E(η̃) 0 1 0 1
E(ỹ) 0 0 1 1

4. FAULT ESTIMATION

As shown in Figure 1, once a sensor fault is detected and iso-
lated, the corresponding nonlinear adaptive estimator is acti-
vated for estimating the unknown fault magnitude in the ac-
celerometer and/or gyroscope measurements. In this section,

the design of nonlinear adaptive estimators for sensor bias es-
timation is described.

4.1. Accelerometer Fault Estimation

Based on Eq. (18), the adaptive observer for estimating the
accelerometer bias magnitude is chosen as:

˙̂x = Ax̂+ f(η, ya) + L2(y − ŷ) +Ga(η)b̂a + Ω
˙̂
ba (24)

Ω̇ = (A− L2C)Ω +Ga(η) (25)
ŷ = Cx̂ , (26)

where x̂ is the estimated position and velocity vector, ŷ is
the estimated position output, b̂a is the estimated sensor bias,
and L2 is the observer gain matrix. The adaptation in the
above adaptive estimator arises due to the unknown bias ba.
The adaptive law for updating b̂a is derived using Lyapunov
synthesis approach (Bastin & Gevers, 1988; X. Zhang, 2011)
and is given by:

˙̂
ba = ΓΩTCT ỹ , (27)

where Γ > 0 is a symmetric and positive-definite learning
rate matrix, and ỹa , ya − ŷa is the output estimation error.
Let us also define the state estimation error as x̃ , x− x̂, and
the parameter estimation error as b̃a , b̂a − ba. The stability
and performance properties of the above adaptive scheme are
described below.

Theorem 1. Suppose that an accelerometer sensor bias fault
occurs at ta ≥ 0 and is detected at some time Ta > ta. Then,
if there exists constants α1 ≥ α0 > 0 and T0 > 0, such that
∀t > Ta

α1I ≥
1

T0

∫ t+T0

t

ΩTCTCΩdτ ≥ α0I , (28)

the adaptive fault estimation scheme described by Eq. (24) -
Eq. (27) guarantees that:

1. all signals in the adaptive estimator remain bounded;

2. E(x̃) and E(b̃a) converge exponentially to zero.

Proof. Based on Eq. (18) and Eq. (24), the dynamics gov-
erning the state estimation error dynamics are given by

˙̃x = Ā2x̃−Ga(η)b̃a − Ω
˙̂
ba +Da(η, t)− L2dp , (29)

where Ā2 , A − L2C and b̃a , b̂a − ba is the parameter
estimation error. By substituting Ga(η) = Ω̇− (A− L2C)Ω
(see Eq. (25)) into Eq. (29), we have

˙̃x = Ā2x̃− (Ω̇− Ā2Ω)b̃a − Ω
˙̂
ba +Da(η, t)− L2dp

= Ā2(x̃+ Ωb̃a)− Ω̇b̃a − Ω
˙̃
ba +Da(η, t)− L2dp .

(30)

Note that, based on Asumption 1, we have ˙̃
ba =

˙̂
ba. By defin-
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ing x̄ , x̃+ Ωb̃a, the above equation can be rewritten as:

˙̄x = Ā2x̄+D(η, t)− L2dp , (31)

where Ā2 is asymptotically stable by design (note that the
pair (A ,C) is observable by design). By noting that the terms
D(η, t) and L2dp in Eq. (31) are bounded (see Assumption
2), it follows that x̄ is also bounded. By using the adaptive
parameter estimation algorithm Eq. (27) and ỹ = C(x̄ −
Ωb̃) + dp, we obtain

˙̃
ba = ΓΩTCT ỹ

= −ΓΩTCTCΩb̃a + ΓΩTCTCx̄+ ΓΩTCT dp. (32)

Note the condition given by Eq. (28) provides the required
persistent excitation condition for parameter convergence
(Ioannou & Sun, 1996). Thus, using this property in conjunc-
tion with Theorem 2.2 from (Anderson et al., 1986), it follows
that the homogeneous part of Eq. (32) is exponentially stable.
In addition, as can be seen from Eq. (25), Ω is also bounded,
which along with Assumption 2 implies that all signals in Eq.
(32) are bounded. Because x̄, Ω and b̃a are bounded, it then
follows that x̃ is also bounded. This concludes the proof of
the first part of the theorem.

By taking the expectation of Eq. (31) and by using E(na) = 0
and E(dp) = 0, we have:

d

dt

(
E(x̄)

)
= Ā2E(x̄) + E

(
Da(η, t)− L2dp

)
= Ā2E(x̄) .

(33)

Clearly, E(x̄) converges to zero exponentially because of the
stability properties of Ā2. By taking the expectation of Eq.
(32), we have

d

dt

(
E(b̃a)

)
= −ΓΩTCTCΩE(b̃a) + ΓΩTCTCE(x̄)

+ ΓΩTCTE(dp)

= −ΓΩTCTCΩE(b̃a) .

(34)

Thus, based on the persistent of excitation condition Eq. (28),
it follows from Eq. (34) that E(b̃a) converges to zero ex-
ponentially. Finally, by applying the above results to the
definition of x̄, the second part of the theorem can be con-
cluded.

4.2. Gyroscope Fault Estimation

Based on Eq. (12), after the occurrence of a gyroscope bias
fault is detected and isolated, the following adaptive estimator
is designed in order to estimate the unknown sensor bias:

˙̂η = −Λ2(η̂ − η) +Rη(φ, θ)yω −Rη(φ, θ)b̂ω (35)
˙̂
bω = ΓRη(φ, θ)T (η̂ − η) (36)

where η̂ is the Euler angle estimate, b̂ω represents the estima-
tion of the sensor bias, Λ and Γ are positive definite design
matrices. The adaptive law given by Eq. (35) is derived using
Lyapunov synthesis approach (Ioannou & Sun, 1996). In ad-
dition, in order to ensure parameter convergence, Rη(φ, θ)
will need to satisfy the persistence of excitation condition
(Ioannou & Sun, 1996), that is:

α1I ≥
1

T0

∫ t+T0

t

Rη(φ, θ)TRη(φ, θ)dτ ≥ α0I (37)

for some constants α1 ≥ α0 > 0, T0 > 0, and for all t ≥ Tω ,
where Tω is the gyroscope fault detection time. Let us define
the attitude angle estimation error as η̃ , η − η̂ and the bias
estimation error as b̃ω , b̂ω − bω . The stability and learning
performance of the adaptive estimation scheme Eq. (35) - Eq.
(36) is given below.

Theorem 2. Suppose that a gyroscope sensor bias fault
occurs at time tω ≥ 0 and is detected at some time Tω > tω .
Then, if the PE condition given by Eq. (37) is satisfied, the
adaptive scheme described by Eq. (35) - Eq. (36) guarantees
that E(η̃) and E(b̃ω) converge to zero exponentially.

Proof. The state and parameter estimation error dynamics
are given by

˙̃η = −Λ2η̃ +Rη(φ, θ)b̃ω −Rη(φ, θ)nω (38)
˙̃
bω = −ΓRη(φ, θ)T η̃ . (39)

Because nω is bounded (see Assumption 2), it can be eas-
ily shown that all signals involved in Eq. (35) - Eq. (36)
are bounded by considering Rη(φ, θ)nω as a bounded distur-
bance term. Additionally, by taking the expectation of Eq.
(38) and Eq. (39), and by making use of Assumption 2, we
obtain

dE(η̃)

dt
= −Λ2E(η̃) +Rη(φ, θ)E(b̃ω) (40)

dE(b̃ω)

dt
= −ΓRη(φ, θ)TE(η̃) . (41)

Defining ε1 , E(η̃) and ε2 , E(b̃ω), we can rewrite equa-
tions Eq. (40) - Eq. (41) into the following compact form:[

ε̇1
ε̇2

]
=

[
−Λ2 Rη(φ, θ)

−ΓRη(φ, θ)T O

] [
ε1
ε2

]
(42)

where O is a 3 × 3 zero matrix. By following similar rea-
soning logics as given in the proof of Theorem 5.2.2 and
Lemma 5.6.3 in (Ioannou & Sun, 1996), it can be shown that
(ε1 , ε2) = (0 , 0) is exponentially stable, hence, concluding
the proof.
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5. EXPERIMENTAL RESULTS

In this section, real-time experimental results using an indoor
quadrotor test environment are described to illustrate the ef-
fectiveness of the sensor fault diagnosis algorithm.

5.1. Experimental Setup

A block diagram of the experimental system setup is shown
in Figure 2. During flight tests, quadrotor position and at-
titude information is obtained from a Vicon motion capture
camera system. Position and Euler angle measurements are
collected every 10ms and relayed from a Vicon dedicated PC
via TCP/IP connection to a ground station computer. As in
(Macdonald, Leishman, Beard, & McLain, 2014), position
measurements are corrupted with normal noise with standard
deviation of 0.25m. Additionally, position measurements are
down sampled to 1Hz, in order to further simulate real-world
applications. The fault diagnosis method is evaluated in real-
time during autonomous flight of a quadrotor built in-house
with off-the-shelf components. The quadrotor is equipped
with the Qbrain embedded control module from Quanser Inc.
The control module consists of a HiQ acquisition card provid-
ing real-time IMU measurements, and a Gumstix Duo Vero
microcontroller running the real-time control software. An
IEEE 802.11 connection between the ground station PC and
the Gumstix allows for fast and reliable wireless data trans-
mission and on-line parameter tuning. Position and attitude
information obtained from the Vicon system along with tra-
jectory commands generated by the ground station are sent
to the quadrotor in order to achieve real-time autonomous
flight. The control software executes on-board at 500Hz, and
accelerometer and gyroscope measurement are sampled at
200Hz. During the experimental stage, the quadrotor is com-
manded to move in a circular trajectory, while maintaining
constant orientation and altitude. As previously shown, the
fault diagnosis technique employed in this approach is in-
dependent of the structure of the controller. Therefore, for
brevity of presentation, the discussion on controller design is
purposely omitted in this paper.

In order to evaluate the proposed diagnosis method sensor
measurements are artificially corrupted by injecting a con-
stant bias into the accelerometer and gyroscope measurements,
respectively, while the quadrotor is airborne. Figure 3 shows
the fault time profile of the two types of sensor faults under
consideration. As can be seen, an accelerometer fault is intro-
duced at time t = 30s until t = 50s. Between time t = 60s
and time t = 80s, a gyroscope bias is injected into the sen-
sor measurements. Additionally, in order to evaluate the per-
formance of the FDIE algorithm in the presence of multiple
faults, accelerometer and gyroscope faults are simultaneously
injected at time t = 100s. Flight data is processed on-line,
and real-time sensor fault diagnostic decision is generated by
the diagnostic algorithm. In the following sections, the fault

Figure 2. Experimental system architecture setup

diagnosis results are detailed.

Figure 3. Sensor fault time profile

5.2. Case of Accelerometer Bias

The case of an accelerometer measurement bias fault is il-
lustrated in this section. At time t = 30s, a constant bias
ba = [0.15, 0.2, 0.75]Tm/s2, is injected into the accelerom-
eter measurements. Figure 4 shows the residuals generated by
the two diagnostic estimators described by Eq. (14) and Eq.
(19), respectively. In order to enhance the diagnostic decision
based on the FDI logic given by Table 1, the two-sided cumu-
lative sum (CUSUM) test is applied to process the diagnos-
tic residuals (Gustafsson, 2000). Figure 5 shows the statistic
property generated by the CUSUM test. A fixed threshold is
chosen for the detection and isolation of sensor faults. As can
be seen, shortly after the occurrence of the fault, at least one
component of the test statistic corresponding to the residuals
generated by the accelerometer diagnostic estimator exceeds
the detection threshold, indicating the occurence of a fault in
the accelerometr sensor. On the other hand, all components
of the test statistic corresponding to the gyroscope bias re-
main well below the detection threshold. Based on the detec-
tion and isolation logic given in Table 1, it can be concluded
that a fault has occurred in the accelerometer measurement.
In addition, Figure 6 shows the estimation of the bias in the
accelerometer for each axis, respectively. As can be seen,
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the estimate of accelerometer converges closely to the actual
value.

Figure 4. Raw diagnostic residuals: accelerometer bias fault

Figure 5. Diagnostic residual generated by CUSUM: ac-
celerometer bias fault.

Figure 6. Accelerometer bias estimation.

5.3. Case of Gyroscope Bias

A gyroscope bias with bω = [5, −7, −10]T ◦/s is injected
into the sensor measurements at time t = 60s. Figure 7 shows
the raw diagnostic residuals generated by Eq. (14) and Eq.
(19), respectively. The results of the CUSUM test are shown
in Figure 8. As can be seen, at least one component of the test
statistic corresponding to the gyroscope sensor fault exceeds
the detection threshold shortly after fault occurrence. On the
other hand, all components of the test statistic corresponding
to the accelerometer fault remain well below the detection

threshold. Thus, it can be concluded that a fault has occurred
in the gyroscope measurement. In addition, Figure 9 shows
the estimation of the bias in the gyroscope for each axis, re-
spectively. As can be seen, after a short time, the estimate of
gyroscope bias is reasonably close to its actual value.

Figure 7. Raw diagnostic residuals: gyroscope bias fault

Figure 8. Diagnostic residual generated by CUSUM: gyro-
scope bias fault.

Figure 9. Gyroscope bias estimation.

5.4. Case of Simultaneous Faults

The case of simultaneous accelerometer and gyroscope faults
is also considered. Specifically, at time t = 100s, biases
ba = [0.15, 0.2, 0.75]Tm/s2 and bω = [5, −7, −10]T ◦/s
are injected into accelerometer and gyroscope measurements,
respectively. Figure 10 shows the statistic property generated
by the CUSUM test. As can be seen, shortly after the occur-
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Figure 10. Diagnostic residual generated by CUSUM: simul-
taneous sensor faults.

rence of the faults, the test statistics corresponding to both di-
agnostic estimators, exceed their respective detection thresh-
olds. Therefore, it can be concluded that faults have occurred
in both accelerometer and gyroscope measurements. Further-
more, Figure 11 and Figure 12 show the estimation of the
accelerometer and gyroscope biases, respectively. As can be
seen, estimation results are satisfactory.

Figure 11. Accelerometer bias estimation in the simultaneous
fault occurrence scenario.

Figure 12. Gyroscope bias estimation in the simultaneous
fault occurrence scenario.

6. CONCLUSION AND FUTURE WORK

In this paper, the design, analysis, and real-time experimen-
tal results of a nonlinear fault diagnostic method for sensor
bias faults in accelerometer and gyroscope measurements of

quadrotor UAVs is presented. Based on the idea that ac-
celerometer and gyroscope measurements coincide with trans-
lational forces and rotational and moments acting on the UAV
body frame, respectively, two FDI estimators are designed
to generate structured residuals for fault detection and iso-
lation. In addition, nonlinear adaptive estimation estimation
schemes are developed to provide an estimate of the sensor
bias. The proposed diagnostic method is implemented on
a quadrotor UAV test environment and demonstrated during
real-time autonomous flight. An interesting direction for fu-
ture research is to develop and demonstrate a systematic fault
diagnostic and fault-tolerant control method for quadrotor ac-
tuator faults.
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