148 research outputs found

    Ground-based stratospheric O3 and HNO3 measurements at Thule, Greenland: An intercomparison with Aura MLS observations

    Get PDF
    In response to the need for improving our understanding of the evolution and the interannual variability of the winter Arctic stratosphere, in January 2009 a Ground-Based Millimeter-wave Spectrometer (GBMS) was installed at the Network for the Detection of Atmospheric Composition Change (NDACC) site in Thule (76.5° N, 68.8° W), Greenland. In this work, stratospheric GBMS O3 and HNO3 vertical profiles obtained from Thule during the winters 2010 (HNO3 only), 2011 and 2012 are characterized and intercompared with co-located measurements of the Aura Microwave Limb Sounder (MLS) experiment. Using a recently developed algorithm based on Optimal Estimation, we find that the GBMS O3 retrievals show good sensitivity (> 80%) to atmospheric variations between ~ 17 and ~ 50 km, where their 1σ uncertainty is estimated to be the larger of ~ 11% or 0.2 ppmv. Similarly, HNO3 profiles can be considered for scientific use between ~ 17 and ~ 45 km altitude, with a 1σ uncertainty that amounts to the larger of 15% or 0.2 ppbv. Comparisons with Aura MLS version 3.3 observations show that, on average, GBMS O3 mixing ratios are biased negatively with respect to MLS throughout the stratosphere, with differences ranging between ~ 0.3 ppmv (8%) and 0.9 ppmv (18%) in the 17–50 km vertical range. GBMS HNO3 values display instead a positive bias with respect to MLS up to 26 km, reaching a maximum of ~ 1 ppbv (10%) near the mixing ratio profile peak. O3 and HNO3 values from the two datasets prove to be well correlated at all altitudes, although their correlations worsen at the lower end of the altitude ranges considered. Column contents of GBMS and MLS O3 (from 20 km upwards) and HNO3 (from 17 km upwards) correlate very well and indicate that GBMS measurements can provide valuable estimates of column interannual and seasonal variations for these compounds

    Revising the retrieval technique of a long-term stratospheric HNO3 data set: from a constrained matrix inversion to the optimal estimation algorithm

    Get PDF
    The Ground-Based Millimeter-wave Spectrometer (GBMS) was designed and built at the State University of New York at Stony Brook in the early 1990s and since then has carried out many measurement campaigns of stratospheric O3, HNO3, CO and N2O at polar and mid-latitudes. Its HNO3 data set shed light on HNO3 annual cycles over the Antarctic continent and contributed to the validation of both generations of the satellite-based JPL Microwave Limb Sounder (MLS). Following the increasing need for long-term data sets of stratospheric constituents, we resolved to establish a long-term GMBS observation site at the Arctic station of Thule (76.5 N, 68.8 W), Greenland, beginning in January 2009, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Furthermore, we updated the retrieval algorithm adapting the Optimal Estimation (OE) method to GBMS spectral data in order to conform to the standard of the Network for the Detection of Atmospheric Composition Change (NDACC) microwave group, and to provide our retrievals with a set of averaging kernels that allow more straightforward comparisons with other data sets. The new OE algorithm was applied to GBMS HNO3 data sets from 1993 South Pole observations to date, in order to produce HNO3 version 2 (v2) profiles. A sample of results obtained at Antarctic latitudes in fall and winter and at mid-latitudes is shown here. In most conditions, v2 inversions show a sensitivity (i.e., sum of column elements of the averaging kernel matrix) of 100±20% from 20 to 45 km altitude, with somewhat worse (better) sensitivity in the Antarctic winter lower (upper) stratosphere. The 1 uncertainty on HNO3 v2 mixing ratio vertical profiles depends on altitude and is estimated at 15% or 0.3 ppbv, whichever is larger. Comparisons of v2 with former (v1) GBMS HNO3 vertical profiles, obtained employing the constrained matrix inversion method, show that v1 and v2 profiles are overall consistent. The main difference is at the HNO3 mixing ratio maximum in the 20–25 km altitude range, which is smaller in v2 than v1 profiles by up to 2 ppbv at mid-latitudes and during the Antarctic fall. This difference suggests a better agreement of GBMS HNO3 v2 profiles with both UARS/ and EOS Aura/MLS HNO3 data than previous v1 profiles

    Intercomparison between Aura MLS and ground-based millimeter-wave observations of stratospheric O3 and HNO3 from Thule (76.5° N, 68.7° W)

    Get PDF
    The Ground-Based Millimeter-wave Spectrometer (GBMS) measures rotational emission spectra of middle atmospheric trace gases, with a spectral window of 600 MHz tunable between approximately 230 and 280 GHz and a resolution of up to 65 kHz. It was designed and built at the State University of New York at Stony Brook in the early 90’s and since then has been regularly upgraded and operated at a variety of sites in both hemispheres, at polar and mid-latitudes. In view of a growing need for long-term data sets of stratospheric constituents, in January 2009 we resolved to establish a long-term GBMS observation site at the Arctic station of Thule Air Base (76.5°N, 68.8°W), Greenland, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Since then three winter campaigns were carried out from Thule during the period January-March 2009, 2010 and 2011. Observations of O3, HNO3, CO and N2O were performed, mostly on a daily basis, except during periods characterized by poor weather conditions. In this study we compare GBMS stratospheric O3 and HNO3 measurements obtained during these three winter periods at Thule with colocated satellite observations from the Aura Microwave Limb Sounder (MLS) experiment. The Version 3.3 Aura MLS O3 and HNO3 data sets have a resolution of about 2.5 km and 3-4 km, respectively, in the stratosphere. The MLS precisions range from 0.1 to 0.6 ppmv for O3 and about 0.6-0.7 ppbv for HNO3 throughout the stratosphere. Based on preliminary comparisons with correlative data sets and on results obtained for v2.2, systematic uncertainties are estimated to lead to HNO3 measurements biases that vary between ±0.5 and ±2 ppbv and multiplicative errors of ±5 –15% throughout most of the stratosphere. Similarly, a systematic uncertainty of the order of 5-10% has been assessed for O3 data. As for the GBMS, the O3 pure rotational transition line at 276.923 GHz is observed with a ~1.5-hour integration, while the weaker HNO3 spectrum, represented by a cluster of superimposed emission lines centered at 269.1 GHz, needs about 4 hours of integration. Taking advantage of the dependence of the line broadening on atmospheric pressure, inversion techniques allow the retrieval of vertical profiles from approximately 15 to 50 km. In the past, GBMS O3 and HNO3 spectra were deconvolved using a Chahine-Twomey (C-T) and an iterative constrained Matrix Inversion (MI) technique, respectively. More recently, the GBMS retrieval algorithm has been updated to an Optimal Estimation Method (OEM) in order to conform to the standard of the NDACC microwave group, and to easily provide retrievals with a set of averaging kernels that grants more straightforward comparisons with other data sets. The nominal vertical resolution of the retrieved profiles (defined as the FWHM of averaging kernels) is ~8 km for O3 and ~ 12 km for HNO3, although the inversion technique locates the maximum of the mixing ratio profile of both species with a much better accuracy (i.e., ~ ±1 km). The 1σ uncertainty of O3 and HNO3 mixing ratio vertical profiles depends on altitude and is estimated at ~15% or 0.3 ppbv, whichever is larger. Each GBMS profile is compared to the closest MLS profile, with coincidence criteria of ±10° longitude, ±2.5° latitude and ±12 h. In order to avoid of severely compromising the comparison between GBMS and Aura MLS observations due to the much higher resolution of the satellite-derived data sets, we ‘convolved’ the MLS profiles using the GBMS averaging kernels before directly comparing the two data sets. For both species a fairly good agreement between MLS and GBMS profiles is observed, with the GBMS showing, however, a ~10-15% low bias at the mixing ratio peak

    Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and mm-wave spectroscopy at Thule (76.5°N, 68.8°W), Greenland.

    Get PDF
    The 2009 Arctic sudden stratospheric warming (SSW) was the most intense event of this kind ever observed. Unique ground-based measurements of middle atmospheric profiles for temperature, O3, CO, and N2O obtained at Thule (76.5°N, 68.8°W), Greenland, in the period January – early March are used to show the evolution of the 2009 SSW in the region of its maximum intensity. The first sign of the SSW was detected at Ξ~2000 K on January 19, when a rapid decrease in CO mixing ratio took place. The first evidence of a temperature increase was observed at the same level on 22 January, the earliest date on which lidar measurements reached above ~50 km. The warming propagated from the upper to the lower stratosphere in 7 days and the record maximum temperature of 289 K was observed between 1300 and 1500 K potential temperature on 22 January. A strong vortex splitting was associated with the SSW. Stratospheric backward trajectories indicate that airmasses arriving to Thule during the warming peak underwent a rapid compression and an intense adiabatic warming of up to 50 K. The rapid advection of air from the extra-tropics was also occasionally observed to produce elevated values of N2O mixing ratio. Starting from mid-February the temperature profile and the N2O mixing ratio returned to the pre-warming values in the mid and upper stratosphere, indicating the reformation of the vortex at these levels. In late winter, vertical descent from starting altitudes of ~60 km is estimated from CO profiles to be 0.25±0.05 km/day

    Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    Get PDF
    Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m) by means of a Ground-Based Millimeter-wave Spectrometer (GBMS). Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ∌17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ∌32 km are very well correlated with the solar illumination experienced by air masses over the previous ∌15 days, showing that already at 32 km altitude ozone photochemistry dominates over transport processes. The correlation of lower stratospheric ozone concentrations with potential vorticity as an indicator of transport is instead not as clear-cut, due to very complex mixing processes that characterize stratospheric air at mid-latitudes. Correlations of O3 over Testa Grigia with stratospheric tracers such as N2O and HCN, also observed by means of the GBMS, are planned for the future, in order to better characterize lower stratospheric dynamics and therefore lower stratospheric ozone concentrations at mid-latitudes

    Observations of surface radiation and stratospheric processes at Thule Air Base, Greenland, during the IPY

    Get PDF
    Ground-based measurements of atmospheric parameters have been carried out for more than 20 years at the Network for the Detection of Atmospheric Composition Change (NDACC) station at Thule Air Base (76.5°N, 68.8°W), on the north-western coast of Greenland. Various instruments dedicated to the study of the lower and middle polar atmosphere are installed at Thule in the framework of a long standing collaboration among Danish, Italian, and US research institutes and universities. This effort aims at monitoring the composition, structure and dynamics of the polar stratosphere, and at studying the Arctic energy budget and the role played by different factors, such as aerosols, water vapour, and surface albedo. During the International Polar Year (IPY), in winter 2008-2009, an intensive measurement campaign was conducted at Thule within the framework of the IPY project “Ozone layer and UV radiation in a changing climate evaluated during IPY” (ORACLE-O3) which sought to improve our understanding of the complex mechanisms that lead to the Arctic stratospheric O3 depletion. The campaign involved a lidar system, measuring aerosol backscatter and depolarization ratios up to 35 km and atmospheric temperature profiles from 25 to 70 km altitude, a ground-based millimeter-wave spectrometer (GBMS) used to derive stratospheric mixing ratio profiles of different chemical species involved in the stratospheric ozone depletion cycle, and then ground-based radiometers and a Cimel sunphotometer to study the Arctic radiative budget at the surface. The observations show that the surface radiation budget is mainly regulated by the longwave component throughout most of the year. Clouds have a significant impact contributing to enhance the role of longwave radiation. Besides clouds, water vapour seasonal changes produce the largest modification in the shortwave component at the surface, followed by changes in surface albedo and in aerosol amounts. For what concerns the middle atmosphere, during the first part of winter 2008-2009 the cold polar vortex allowed for the formation of polar stratospheric clouds (PSCs) which were observed above Thule by means of the lidar. This period was also characterized by GBMS measurements of low values of O3 due to the catalytic reactions prompted by the PSCs. In mid- January, as the most intense Sudden Stratospheric Warming event ever observed in the Arctic occurred, GBMS and lidar measurements of O3, N2O, CO and temperature described its evolution as it propagated from the upper atmosphere to the lower stratosphere

    Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    Get PDF
    Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m) by means of a Ground-Based Millimeter-wave Spectrometer (GBMS). Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ?17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ?32 km are very well correlated with the solar illumination experienced by air masses over the previous ?15 days, showing that already at 32 km altitude ozone photochemistry dominates over transport processes. The correlation of lower stratospheric ozone concentrations with potential vorticity as an indicator of transport is instead not as clear-cut, due to very complex mixing processes that characterize stratospheric air at mid-latitudes. Correlations of O3 over Testa Grigia with stratospheric tracers such as N2O and HCN, also observed by means of the GBMS, are planned for the future, in order to better characterize lower stratospheric dynamics and therefore lower stratospheric ozone concentrations at mid-latitudes

    Childhood versus adulthood-onset autoinflammatory disorders: myths and truths intertwined

    Get PDF
    Autoinflammatory disorders are characterized by spontaneous episodes of systemic inflammation deriving from inherited defects of the innate immune system. Childhood is usually the lifetime involved in most inherited autoinflammatory disorders, but a moderate number of patients may experience disease onset during adulthood. Herein we report our experience in the clinical and genetic approach to the diagnosis of autoinflammatory disorders in regard of the first 500 pediatric and adult patients evaluated during the period 2007-2012 in our Center, due to histories of periodically-recurring inflammatory attacks, giving emphasis to the differences observed according to patients'age and to the most relevant data differentiating child and adult-onset autoinflammatory disorders in the medical literature

    A systematic validation of hot Neptunes in TESS data

    Full text link
    We statistically validated a sample of hot Neptune candidates applying a two-step vetting technique using DAVE and TRICERATOPS. We performed a systematic validation of 250 transit-like events in the Transiting Exoplanet Survey Satellite (TESS) archive in the parameter region defined by P≀4P\leq 4 d and 3R⊕≀R≀5R⊕3R_\oplus\leq R\leq 5R_\oplus. Through our analysis, we identified 18 hot Neptune-sized candidates, with a false positive probability <50%<50\%. Nine of these planet candidates still need to be confirmed. For each of the nine targets we retrieved the stellar parameters using ARIADNE and derived constraints on the planetary parameters by fitting the lightcurves with the juliet package. Within this sample of nine candidates, we statistically validated (i.e, with false positive probability < 0.3%0.3\%) two systems (TOI-277 b and TOI-1288 b) by re-processing the candidates with TRICERATOPS along with follow-up observations. These new validated exoplanets expand the known hot Neptunes population and are high-priority targets for future radial velocities follow-up.Comment: 24 pages, 20 figures. Accepted for publication on MNRA
    • 

    corecore