31 research outputs found
Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus
Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150Â ÎŒM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1â100Â ÎŒM) added 30Â min to 6Â h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5Â nmol/1Â ÎŒl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5â10Â nmol/1Â ÎŒl) injected into the dorsal hippocampus 30Â min, 1Â h, or 3Â h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100Â ÎŒM) significantly increased Îł-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30Â min to 6Â h). The role of enhanced GABAergic transmission in the neuroprotection is postulated
Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families.
Discovery of most autosomal recessive disease-associated genes has involved analysis of large, often consanguineous multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of new dominant causes of rare, genetically heterogeneous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios. Here we analyzed 4,125 families with diverse, rare and genetically heterogeneous developmental disorders and identified four new autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (selecting probands with rare, biallelic and putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population and (ii) the phenotypic similarity of patients with recessive variants in the same candidate gene. This new paradigm promises to catalyze the discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations and those caused predominantly by compound heterozygous genotypes
The genome of the sea urchin Strongylocentrotus purpuratus
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus
purpuratus, a model for developmental and systems biology. The sequencing strategy combined
whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones,
aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome.
The genome encodes about 23,300 genes, including many previously thought to be vertebrate
innovations or known only outside the deuterostomes. This echinoderm genome provides an
evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes
Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (âMISEVâ) guidelines for the field in 2014. We now update these âMISEV2014â guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome
Cardio-facio-cutaneous (CFC) syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. It phenotypically overlaps with Noonan and Costello syndrome, which are caused by mutations in PTPN11 and HRAS, respectively. in 43 individuals with CFC, we identified two heterozygous KRAS mutations in three individuals and eight BRAF mutations in 16 individuals, suggesting that dysregulation of the RAS-RAF-ERK pathway is a common molecular basis for the three related disorders.Tohoku Univ, Sch Med, Dept Med Genet, Sendai, Miyagi, JapanCatholic Univ, Ist Genet Med, Rome, ItalyHop Robert Debre, APHP, Dept Genet, Paris, FranceOsaka Med Ctr, Dept Planning & Res, Osaka, JapanRes Inst Maternal & Child Hlth, Osaka, JapanInst Child Hlth, Clin & Mol Genet Unit, London, EnglandAcad Med Ctr, Dept Pediat, Amsterdam, NetherlandsUniv Essen Gesamthsch, Inst Human Genet, Essen, GermanyUNIFESP, Ctr Med Genet, SĂŁo Paulo, BrazilKanagawa Childrens Med Ctr, Div Med Genet, Yokohama, Kanagawa, JapanSaitama Childrens Med Ctr, Div Med Genet, Saitama, JapanGreat Ormond St Hosp Sick Children, London, EnglandPitie Salpetriere Univ Hosp, Dept Genet, Paris, FranceUniv Hosp, Dept Genet, Angers, FranceAzienda Osped Univ G Martino, Dipartimento Sci Pediat Med & Chirurg, Unita Operat Complessa Patol Neonatale & Terapia, Messina, ItalyUniv Ryukyus, Sch Med, Dept Med Genet, Okinawa, JapanYokohama City Univ, Grad Sch Med, Dept Human Genet, Yokohama, Kanagawa, JapanTohoku Univ, Comprehens Res & Educ Ctr Planning Drug Dev & Cli, Cent COE Program 21, Sendai, Miyagi, JapanUNIFESP, Ctr Med Genet, SĂŁo Paulo, BrazilWeb of Scienc
Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation.
Noonan syndrome is a common human autosomal dominant birth defect, characterized by short stature, facial abnormalities, heart defects and possibly increased risk of leukemia. Mutations of Ptpn11 (also known as Shp2), which encodes the protein-tyrosine phosphatase Shp2, occur in approximately 50% of individuals with Noonan syndrome, but their molecular, cellular and developmental effects, and the relationship between Noonan syndrome and leukemia, are unclear. We generated mice expressing the Noonan syndrome-associated mutant D61G. When homozygous, the D61G mutant is embryonic lethal, whereas heterozygotes have decreased viability. Surviving Ptpn11(D61G/+) embryos ( approximately 50%) have short stature, craniofacial abnormalities similar to those in Noonan syndrome, and myeloproliferative disease. Severely affected Ptpn11(D61G/+) embryos ( approximately 50%) have multiple cardiac defects similar to those in mice lacking the Ras-GAP protein neurofibromin. Their endocardial cushions have increased Erk activation, but Erk hyperactivation is cell and pathway specific. Our results clarify the relationship between Noonan syndrome and leukemia and show that a single Ptpn11 gain-of-function mutation evokes all major features of Noonan syndrome by acting on multiple developmental lineages in a gene dosage-dependent and pathway-selective manner