11 research outputs found

    Effect of chewing on dental patients with total denture: an experimental study

    Get PDF
    In this study, we have explored the prospect of assessing and following level of total denture adaptation by use of EMG signals recorded during gum chewing. Total of 14 edentulous patients, 6 women and 8 men, with an average age of 63 +/- 9 years, were recruited. Separate EMG recordings were obtained from left and right temporalis and masseter muscles of the patients for a period of 10 seconds, while they were chewing a sugar-free gum on their left and right sides. EMG recordings were repeated at three times: before, right after, and six months after the placement of the denture. We have tried to standardize environmental and individual factors during EMG recordings. The EMG data have been pre-processed and analyzed using Discrete Wavelet Transform (DWT) and obtained features were statistically evaluated using the paired sample t-test. Chewing activity on the right and left side is analyzed by making comparisons of muscle activity between before and right-after cases and before and six-months-after denture fixation cases. A comparison between right and left side mastication is also made at different time points. We have suggested and implemented a new test and comparison procedure in order to assess adaptation to denture fixation using EMG analysis. In this study, the results indicate that DWT based EMG analysis is instrumental in evaluating denture adaptation and as time progresses the adaptation to denture and hence chewing efficiency increases in patients with total denture replacement. In this study, we have explored the prospect of assessing and following level of total denture adaptation by use of EMG signals recorded during gum chewing. Total of 14 edentulous patients, 6 women and 8 men, with an average age of 63&plusmn;9 years, were recruited. Separate EMG recordings were obtained from left and right temporalis and masseter muscles of the patients for a period of 10 seconds, while they were chewing a sugar-free gum on their left and right sides. EMG recordings were repeated at three times: before, right after, and six months after the placement of the denture. We have tried to standardize environmental and individual factors during EMG recordings. The EMG data have been pre-processed and analyzed using Discrete Wavelet Transform (DWT) and obtained features were statistically evaluated using the paired sample t-test. Chewing activity on the right and left side is analyzed by making comparisons of muscle activity between before and right-after cases and before and six-months-after denture fixation cases. A comparison between right and left side mastication is also made at different time points. We have suggested and implemented a new test and comparison procedure in order to assess adaptation to denture fixation using EMG analysis. In this study, the results indicate that DWT based EMG analysis is instrumental in evaluating denture adaptation and as time progresses the adaptation to denture and hence chewing efficiency increases in patients with total denture replacement.</p

    Exploring the key drivers of forest flammability in wet eucalypt forests using expert-derived conceptual models

    No full text
    © 2020, Springer Nature B.V. Context: Fire behaviour research has largely focused on dry ecosystems that burn frequently, with far less attention on wetter forests. Yet, the impacts of fire in wet forests can be high and therefore understanding the drivers of fire in these systems is vital. Objectives: We sought to identify and rank by importance the factors plausibly driving flammability in wet eucalypt forests, and describe relationships between them. In doing so, we formulated a set of research priorities. Methods: Conceptual models of forest flammability in wet eucalypt forests were elicited from 21 fire experts using a combination of elicitation techniques. Forest flammability was defined using fire occurrence and fireline intensity as measures of ignitability and heat release rate, respectively. Results: There were shared and divergent opinions about the drivers of flammability in wet eucalypt forests. Widely agreed factors were drought, dead fine fuel moisture content, weather and topography. These factors all influence the availability of biomass to burn, albeit their effects and interactions on various dimensions of flammability are poorly understood. Differences between the models related to lesser understood factors (e.g. live and coarse fuel moisture, plant traits, heatwaves) and the links between factors. Conclusions: By documenting alternative conceptual models, we made shared and divergent opinions explicit about flammability in wet forests. We identified four priority research areas: (1) quantifying drought and fuel moisture thresholds for fire occurrence and intensity, (2) modelling microclimate in dense vegetation and rugged terrain, (3) determining the attributes of live vegetation that influence forest flammability, (4) evaluating fire management strategies

    Exploring the key drivers of forest flammability in wet eucalypt forests using expert-derived conceptual models

    No full text
    Fire behaviour research has largely focused on dry ecosystems that burn frequently, with far less attention on wetter forests. Yet, the impacts of fire in wet forests can be high and therefore understanding the drivers of fire in these systems is vital
    corecore