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Abstract Current fire danger scales do not adequately reflect the potential destructive

force of a bushfire in Australia and, therefore, do not provide fire prone communities with

an adequate warning for the potential loss of human life and property. To determine

options for developing a bushfire severity scale based on community impact and whether a

link exists between the energy release rate (power) of a fire and community loss, this paper

reviewed observations of 79 wildfires (from 1939 to 2009) across Victoria and other

southern states of Australia. A methodology for estimating fire power based on fuel

loading, fire size and progression rate is presented. McArthur’s existing fire danger indices

(FDIs) as well as fuel- and slope-adjusted FDIs were calculated using fire weather data.

Analysis of possible relationships between fire power, FDIs, rate of spread and Byram’s

fireline intensity and community loss was performed using exposure as a covariate. Pre-

liminary results showed that a stronger relationship exists between community loss and the

power of the fire than between loss and FDI, although fuel-adjusted FDI was also a good

predictor of loss. The database developed for this study and the relationships established

are essential for undertaking future studies that require observations of past fire behaviour

and losses and also to form the basis of developing a new severity scale.
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1 Introduction

Since European settlement, Australia has a long history of destructive fires, particularly in

the inhabited forest and grasslands of the southern states. Some of the most destructive fires

of Australia recorded include Black Friday (1939), Dwellingup (1961), Hobart (1967),

Western District, (1977), Ash Wednesday (1983), Como/Jannali (1994), Canberra (2003)

and, more recently, Black Saturday (2009). These fires impacted communities for many

reasons described in a number of inquiries and commissions, the latest being the Royal

Commission established to investigate the Black Saturday bushfires (see Teague et al.

2010). These fires were destructive in nature because of the catastrophic losses incurred to

communities through the loss of human life, property, assets and infrastructure. Under-

pinning all of these events are particular weather conditions, fuel type and fuel condition,

and how the fire impacts the community, as well as the vulnerability and response of

communities.

The way in which destructive and other fires evolve and behave has, in some cases, been

well researched and documented in the literature. At the forefront of the research into fire

behaviour was the work conducted by McArthur (1962, 1966, 1967) in the 1950s and

1960s on grasslands and forests of southern Australia and simultaneously by Peet (1965,

1967) on forests in Western Australia. More recently, improvements in models relating to

fire behaviour have been made for grasslands by Cheney et al. (1993,1998) and for dry

eucalypt forests by Gould et al. (2007a, b) as part of Project Vesta that aimed to com-

prehensively understand and model bushfire behaviour in eucalypt forests in Australia.

Fire danger rating systems (FDRS) are used to assess the potential for bushfire occur-

rence, fire spread and difficulty of suppression (McArthur 1967; Sharples et al. 2009).

Although many examples of fire danger ratings systems exist internationally, this paper

focuses on the McArthur fire danger metres because they are widely used in southern

Australia for declaring fire bans, informing people of the emerging risk of fire and for

planning and allocating resources (McArthur 1966; Luke and McArthur 1978). The

McArthur forest and grass FDRS are based on forest and grass fire danger indices (FFDI

and GFDI, respectively), which were developed in the 1950s and 1960s using available

science, case study evidence and expert opinion (Luke and McArthur 1978). The FFDI and

GFDI are proportional to the predicted rate of spread of a fire on flat ground in standard

fuel and so are linked to the McArthur fire spread predictions.

The Fire Danger Indices (FDIs) are non-linear functions of simple weather and drought

variables that include temperature, relative humidity, wind speed and either drought factor

(DF) for forests or curing for grasslands. The forest and grassland fire danger ratings

(FFDR and GFDR) are categorical ratings determined from non-linearly increasing ranges

of the FFDI and GFDI. Although the McArthur FDRS has been in use for over 50 years,

there are some weaknesses in the underlying system. Firstly, experimental studies largely

focused on many small scale fires in dry and wet sclerophyll forests in New South Wales

and the Australian Capital Territory (ACT) under moderate weather conditions and on a

number of experimental fires conducted in dry open sclerophyll jarrah forest in Western

Australia (McArthur 1962), but the data were not published (Cheney et al. 1998). These

experimental fires were supplemented with observations on three well-documented large
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wildfires (McArthur 1962) and field observations of small wildfires. Secondly, the most

severe conditions represented by both forest and grass metres (FFDI and GFDI values of

100) were based on known worst case fires, the 1939 Black Friday for forests (Cheney et al.

1990) and the 1952 Mangoplah for grasslands. Weather conditions for these fires have

since been exceeded a number of times (e.g. Ash Wednesday 1983, Black Saturday 2009).

These two weaknesses limit the applicability of the McArthur FDRS in situations where

the conditions may be out of the range of those in the fire danger metres. A third problem

arises when relating fire danger to community losses because fire danger is determined

over broad regional areas, and so factors that affect fire behaviour such as topography,

atmospheric conditions and fuel hazard are not included in the FDRS. Finally, FDRS are

designed to assess the potential for bushfire occurrence, fire spread and difficulty of sup-

pression (McArthur 1967; Sharples et al. 2009) and not designed for determining the

impact on communities.

While the McArthur FDRS has been an essential component of fire danger warnings in

Australia, a fire danger rating system is needed that transparently reflects how fire

behaviour characteristics determine not only difficulty of suppression, but also the potential

for damage to a community. This topic is of fundamental importance for disaster pre-

vention programmes, but has not received much attention in Australia. In establishing such

a programme, it is critical to predict the scale of damage caused by the bushfire of a given

severity. Although researchers have attempted to address this problem for earthquakes

(Samardjieva and Badal 2002) and hurricanes (Pielke et al. 2008), no such study exists for

the case of bushfires. Many natural hazards have a scale or rating that can be directly

related to the destructive force or potential power of the hazard. For example, earthquakes

use the open ended Richter scale, which is based on the amount of seismic energy released

by the earthquake (USGS 2010). Additionally, a Mercalli rating was created to measure or

rate the effects of an earthquake (USGS 2011) on the Earth’s surface, humans, objects and

structures. For hurricanes, the Saffir Simpson Hurricane Wind Scale is used. This scale is

made up of five categories distinguished by the intensities of their sustained winds and is

primarily used for measuring the potential damage upon landfall (NOAA 2010). Both of

these increase by orders of magnitude in impact from one level to another and are

potentially linked to the amount of damage caused by the hazard (Simpson and Riehl

1981). In order to establish a link between the scale of the disaster and the amount of

damage, a number of studies have attempted to find an empirical relationship between the

magnitude of the hazard and the extent of damage to human life and infrastructure by

investigating case studies of past hazards (Mizutani 1984; Samardjieva and Oike 1992;

Samardjieva and Badal 2002; Pielke et al. 2008; Jaiswal et al. 2010). While these rating

systems are measures during or after an event (not a forecast of conditions prior to one

eventuating), methods of linking the destructive force to the amount of damage should be

considered for categorising bushfire events. A scale that refers to the impact of a bushfire is

logical for consistently assessing each event. Such information would be important for

disaster prevention and risk reduction purposes in managing and preparing for future

bushfires. It is also essential for any future attempts to create or improve the fire danger

rating scale in Australia.

The proposal of linking loss and a fire strength metric is not a new idea. Recently,

Blanchi et al. (2010) demonstrated that a relationship between fire weather severity and

house loss does exist. Furthermore, Gill (1998) theorised developing a ‘Richter-like’ scale

for fires based on fireline intensity as the variable associated with destructive force and

loss, and other studies have suggested a link between fireline intensity and community loss

(e.g. Middelmann 2007; Wang 2006). Fireline intensity is defined as the rate of heat
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released per unit length of fire front (Byram 1959). Because fire intensity represents an

important characteristic for fire propagation, it provides critical information on fire sup-

pression, ecological damage and fire planning (Salazar and Bradshaw 1986). Byram’s

fireline intensity is often presented as the only measure of fire intensity (Chandler et al.

1983; Johnson and Miyanishi 2001), but this fails to acknowledge that other measures of

energy release from bushfires may provide a better metric for fire impact. For example,

losses in communities are typically caused by a combination of wind- and plume-driven

fires, which is not reflected in Byram’s fireline intensity. An alternative approach to better

capture the plume convective energy is to measure the rate of energy release around the fire

perimeter. This presents a surrogate to describe the potential energy that could drive

convective plume-driven fires and their consequent impact on communities. The energy

release rate in this paper is known as Power—this is not to be confused with Byram’s use

of ‘power’ which is ‘the rate at which buoyant air does work in ascending unit vertical

distance of the convection column’ (Nelson 2003). ‘Power’ is used in the combustion

science sense, where power is the energy released from combustion per unit time (Drysdale

1999) and not in a physics sense, where power is the rate at which work is performed for a

given unit of time (Semat and Baumel 1974).

While relationships between fire strength and community impacts have been hypothe-

sised to exist, no data have previously been compiled and analysed to support this theory.

However, with a growing, and increasingly improving database of fire statistics covering

Australia’s long history of destructive fires, a review of current fire danger ratings can now

be conducted using the latest observations and estimates of fire behaviour and fire weather,

and an investigation can be made of how these relate to community losses. Therefore, in

this study, a comprehensive spatial database of forest and grass fires in Australia has been

assembled, which includes fire danger indices (FFDI and GFDI), measures of fire severity

(Byram’s fireline intensity and fire power), fire behaviour characteristics (e.g. rate of

spread, fire area), community loss (number of fatalities, houses destroyed and economic

cost of the fire), site information (e.g. vegetation type and fuel loading) and ancillary

information such as weather characteristics. Such a database that combines vital infor-

mation is necessary to investigate options to develop a bushfire severity scale so that better

fire management processes, including community information and warnings, can be put in

place.

The aim of this paper is to develop a measure of fire severity, or potential destructive

force, focused on community impact, either by improving current FDRS (by accounting for

fuel and slope variability), or as a standalone scale. Therefore, a new methodology was

established to assess how various measures of fire severity impact on community loss. The

paper summarises the procedures developed and explores the relationship between fire

behaviour indices/measures of fire power and community loss.

2 Study area

South-eastern Australia experiences relatively frequent major fires with the bushfire danger

becoming serious in some parts of Victoria every two to three years (Luke and McArthur

1978). This is because of the regular occurrence of extreme weather (Long 2006), the steep

topography and the accumulation of flammable vegetation as well as occasional severe

droughts (all of which influence fire behaviour). Eucalypts are the dominant forest type

(McArthur 1967), but there are a range of other flammable vegetation types such as mallee

heath and coastal heathland (Billing 1987). Due to the natural climate variability in
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Australia, and specifically in Victoria, large areas are prone to bushfires. Long periods of

hot weather, coupled with low rainfall affect vegetation dryness and often cause drought

and tinder conditions throughout the state (Bureau of Meteorology 2009). Additionally, if

these drought conditions are preceded by high spring rains, the summer bushfires in more

grassy communities can be intense due to high grass curing and additional fuel load on the

surface (Bureau of Meteorology 2009).

3 Data and methods

To assess the relationship between loss and the destructive power of the fires studied,

several data sets were required. Fire weather, fire behaviour, vegetation type, fuel loading,

topography, community loss and house and population density information were collected

for each fire. The data sets were compiled from a range of sources and each data set is

discussed separately. The spatial layers and the tabular data were linked spatially so that

where possible spatial information could be extracted for analysis. Several fires were

included for which no community loss was recorded so that the risk of loss could be

assessed for given weather conditions.

3.1 Summary of fires in the southern states of Australia

A total of 79 fires were analysed in this study. The number of fires included was largely

restricted by data availability. Most of the fires were in Victoria (72); one in Western

Australia, two in South Australia, two in New South Wales and two in the ACT. Of the 79

fires, 47 of these were in forested regions and 32 were in grass. Of the fires studied, 35 had

one or more fatalities during the event, 25 of these fires occurred in forest and 10 in grass.

In terms of house loss, 57 of the 75 fires with house loss information had one or more

houses destroyed, 34 of these being in forest and 23 in grass. The locations of the bushfires

analysed in this paper are shown in Fig. 1.

3.2 Fire perimeters and fire behaviour mapping

A Victorian fire history database created by the Country Fire Authority (CFA) and the

Department of Sustainability and Environment (DSE) containing a digital perimeter for

many fires was used; however, for some older fires (pre-1980s) and fires from other states,

perimeters were only available as paper maps so they were scanned, digitised, geometri-

cally rectified and then added to the geographical information systems (GIS) spatial

database.

Many of the fires occurred over several days or were several fires that eventually

coalesced. Where it was known, the fire perimeter on the day the damage was incurred was

used in the analysis. Isochrones, or the locations of the fire perimeter at known times, were

obtained where possible for each fire. These contours detail the spatial spread of the fire

perimeter over temporal scales ranging from 10 minutes to daily intervals. Such detailed

information is essential for understanding how the fire propagated pre- and post-frontal

change, as well as quantifying the rate of spread at various points across the fire. The level

of detail for each fire varied depending on the source and age of the fire, and unfortunately,

very few fires had highly detailed isochrone information (such as those available for the

2009 fires).

Nat Hazards (2012) 63:391–415 395

123



3.3 Fire weather variables

Weather variables were obtained from the Bureau of Meteorology’s automatic weather

station data and government reports that described data from manual and automatic

Fig. 1 The locations of the major bushfires analysed in this study

396 Nat Hazards (2012) 63:391–415

123



weather stations. These data included temperature, relative humidity, rainfall and wind

speed and direction. Often the weather stations were a long distance from where the fire

occurred and the conditions (topography/elevation) may have been very different.

Therefore, the distance between the fire and the weather station was calculated so that this

could be incorporated into the analysis.

3.4 Slope

Slope data were calculated from the VicMap DEM20 (resolution of 20 m) for Victorian

fires and GEODATA 9 Second digital elevation model (DEM-9S) version 3 (www.ga.

gov.au/meta/ANZCW0703011541.html) (resolution approximately 250 m) for all other states.

3.5 Fuel types and loads

Best estimates of fuel load were taken from the literature (including case study reports,

journal articles and government agency documents), although some areas lacked any

estimate, so modelled fuel loads were used. Modelled fuel loads were created using fuel

types, fire history and accumulation curves. Information about the grouping of fuel types

and the fuel accumulation rates can be found in Tolhurst (2005) and McCarthy et al.

(2009). These data were used to produce estimates of the bark load, surface load and

elevated load. For consistency with the literature data, only surface fuel loads estimates

from the modelled data were incorporated into the analysis. Where there were no estimates

for fuel load in the literature or modelled data, estimates were taken from Gellie et al.

(2011).

3.6 Community loss and density

Community loss data were collected from a range of sources many of which were already

compiled by the CFA. Estimates of economic loss were also used in the analyses. For the

Victorian fires in this study that occurred between 1939 and 2008, economic figures were

acquired from the CFA and DSE. These data were constructed according to the State

Emergency Risk Assessment Methodology (State Emergency Mitigation Committee 2005)

and were corrected to 2008 Australian dollars. Economic data for the 2009 fires were

acquired from a recent economic loss assessment (Stephenson 2011), which is based on

methods developed by the OESC (2008). These economic figures were also converted to

2008 Australian dollars. This framework was also used to calculate simple economic costs

for fires other than those in Victoria.

To assess the community loss in relation to the community affected, house and popu-

lation density information were required. In order to be more representative in describing

the impact of house loss, fatalities and economic loss in fire-affected communities, average

densities were calculated over the fire-affected area only. For house density, where pos-

sible, aerial photography obtained over a fire-affected region around the time of the fire

was collected. These images were georectified, collated as a mosaic, and then each

property was digitised to establish the housing density.

Aerial photography was not available for all regions and was not always feasible for

ascertaining house density and for estimating the population density; consequently, Aus-

tralian Bureau of Statistics (ABS) population and housing census data were incorporated.

This was achieved by using statistical local boundaries, local government or census
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districts to provide the best available estimate of broad population and housing densities

using the proportion of area burnt and proximity to towns. The ABS data set at the closest

time to the fire event was used.

A comparison of the orthophoto and ABS data method was conducted for the 2009 fires

to assess how well the two methods compared in capturing housing density. This analysis

showed that in the 2009 case, the ABS method overestimated housing density, and for this

reason, we weighted the different methods, giving lower weighting to the ABS data (see

Table 1).

3.7 Fire danger indices

McArthur’s FDIs were calculated using the weather data from Bureau of Meteorology and

government reports. The data were taken when the FFDI was highest for the day. To test

the applicability of McArthur’s fire danger metre on community loss, FFDI (Mk V) and

GFDI (Mk IV) were calculated for each fire using the same methods as used by the Bureau

of Meteorology (2006).

Both FFDI and GFDI are functions of temperature, humidity and wind speed at a height

of 10 m. The GFDI includes a measure of grassland curing, whereas the FFDI includes a

Table 1 Data accuracy classification system

Rating Magnitude

Weather data

1 Weather station within 25 km of fire 1.00

2 Reference from a report 0.95

3 Weather station within 50 km of fire 0.90

4 Weather station greater than 50 km from fire 0.85

Fuel load information

1 Report—thorough fuel load examination with measurement errors 1.00

2 Report—thorough fuel load examination 0.90

3 Modelled fuel hazard layer 0.80

4 Report—general observation 0.70

5 Fuel load inferred from vegetation type and fuel age (Gellie et al. 2011) 0.40

Fire behaviour—rate of spread (ROS)

1 ROS estimated from map (detailed map, isochrones, high temporal resolution) 1.00

2 ROS estimated from map (detailed map, isochrones, low temporal resolution) 0.90

3 ROS estimated from fire perimeter only 0.80

4 ROS estimated using weather data (McArthur’s method) 0.70

Housing and population densities

1 Spatial layer (ortho photos, address points) 1.00

2 Australian Bureau of Statistics—Census Districts 0.70

3 Estimate from expert 0.40

Economic loss data

1 Figures from economic loss assessment OESC method (Stephenson 2011) 1.00

2 Figures from CFA/DSE fire history database (Country Fire Authority 2010) 0.70

3 Calculated ourselves using DSE Economic loss assessment spreadsheet 0.20
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measure of ‘fuel availability’ reflected in the DF, which is a measure of long-term drying.

The DF is a function of the Keetch–Byram Drought Index (KBDI), which estimates the

cumulative moisture deficiency in the upper soil layers, and it also incorporates infor-

mation about the rainfall record (Keetch and Byram 1968). Equations used to determine

FFDI were those given in Noble et al. (1980), but with the equation to determine the DF

replaced by Griffiths’ algorithm (Griffiths 1999). The equation to determine the GFDI was

that given in Purton (1982). Because the indices are used for broad scale applications, both

forms of the indices assume standard fuel loadings, being 4.5 t/ha for grasslands (Luke and

McArthur 1978) and 12.5 t/ha for forests (McArthur 1967).

3.8 Adjusted fire danger indices

Slope and fuel loading/structure affect fire behaviour (Luke and McArthur 1978). How-

ever, these factors are not included in the McArthur FDIs. To better reflect the fire

behaviour over the fire area, FFDI and GFDI were adjusted to account for fuel loading and

slope in a way that reflects the Mark V Forest Meter and Mark V Grassland Meter spread

rate predictions. Equations 1 and 2 are the fuel-adjusted FFDI and GFDI (FFDIF and

GFDIF, respectively)

FFDIF ¼ FFDI� w=1:25; ð1Þ

GFDIF ¼ GFDI� w=0:45; ð2Þ

where w is the average fuel load over the fire area in kg/m2, 1.25 is the standard fuel

loading for the FFDI (12.5 t/ha) converted to kg/m2, and 0.45 is the standard fuel loading

for the GFDI (4.5 t/ha) converted to kg/m2. Equations 3 and 4 are the slope-adjusted FFDI

and GFDI (FFDIS and GFDIS, respectively)

FFDIS ¼ FFDI� expð0:069hÞ; ð3Þ

GFDIS ¼ GFDI� expð0:069hÞ; ð4Þ

where h is the average slope encountered by the head fire in degrees. The multiplier exp

(0.069h) is given in Noble et al. (1980) as an approximation to the increase in no-slope rate

of spread in the Mark V Forest Meter when the slope angle is h degrees. Adjustments for

both fuel and slope are given by Eqs. 5 and 6

FFDIFS ¼ FFDI� w

1:25

� �
� expð0:069hÞ; ð5Þ

GFDIFS ¼ GFDI� w

0:45

� �
� expð0:069hÞ; ð6Þ

These adjustments were used as predictor variables for community loss to see whether

they would be better predictors than the unadjusted FFDI or GFDI.

3.9 Intensity and power measures

The most commonly used measure of the ‘strength’ of a fire is Byram’s fireline intensity,

IB, which is the rate of heat release per unit length of the active fire front (Byram 1959). It

is calculated as
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IB ¼ hwaR; ð7Þ

where wa (kg/m2) is the fuel available for burning in the fire front, h (kJ/kg) is the heat

yield of the available fuel, and R is the forward rate of spread (m/s). Fireline intensity is

thus the rate of energy release over the depth of flame behind unit length of the fire front.

To create a measure describing the energy release rate, two methods were considered.

The first method was to multiply the energy release rate per unit length by some charac-

teristic fireline length for which the intensity is reasonably large. This gives an estimate of

the power of the fire, PWR1, in the form

PWR1 ¼ IB � aP; ð8Þ

where P is the perimeter of the fire, and a is the characteristic fireline length. Three values

of a were used, which were equal to the fraction of the ellipse perimeter at which the

intensity drops to 0.75, 0.5, and 0.25, respectively, of the maximum intensity, each of

which can be shown to be dependent on length-to-breadth ratio, LB. Regressions of log(a)

on functions of LB gave

a ¼
expð1:285� 1:422

ffiffiffiffiffiffi
LB
p
Þ IB [ 0:25IB max

expð4:779� 5:281 LB0:25Þ IB [ 0:50IB max

expð1:472� 2:558
ffiffiffiffiffiffi
LB
p
Þ IB [ 0:75IB max

8<
: ; ð9Þ

with minimum R2 of 0.98. The resulting variables are denoted as PWR1(0.25),

PWR1(0.50) and PWR1(0.75).

Catchpole et al. (1982) extended the definition of intensity in Eq. 7 to intensity around

the perimeter of a fire, where R is replaced by the rate of spread normal to the perimeter.

The spread rate, and thus the intensity, varies around the perimeter, as discussed in

Catchpole et al. (1982). An estimate of the power of the fire, PWR2, is given by integrating

the intensity around the fire perimeter, which is shown in Catchpole et al. (1982) to be

PWR2 ¼
Z

IBds ¼ hwa
dA

dT
; ð10Þ

where dA/dT is the rate of area growth with time. It is shown in Harris et al. (2011) that for

an elliptical fire with length DT, length-to-breadth ratio LB, at a time T after ignition.

PWR2 ¼ phwa

2LB

D2
T

T
; ð11Þ

Note that this assumes that the heat yield and available fuel remain constant around the

fire, whereas recent studies (e.g. Linn and Cunningham 2005) suggest that the combustion

processes are different for heading, flanking and backing fires, thus h and wa would vary

somewhat around the perimeter.

The use of the whole fire was necessary as the position of losses for older fires was

unknown. However, as stated in Wade and Ward (1973), fires are a function of fire size and

the rate at which they spread since this drives the convective phases of the fire. This

process draws energy from all sides of the fire perimeter. Having a better account of fire

intensity along the total fire perimeter and therefore the total energy output better describes

the potential of increased convective energy.

To calculate the power of the fire for fires that have a ‘blow-out’ due to a wind change, a

number of different equations are required. Blow-outs in this study are defined as the rapid

spread of fire following a major wind change when the flank turns into the head fire. The
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methods used to calculate the power of the fire from these blow-outs can be found in the

Appendix of Harris et al. (2011). The equations are just variations on the equation for an

ellipse and cover square, rectangular and triangular blow-outs. This is explained further in

the next section.

3.10 Extracting data for calculating power and intensity

To calculate PWR1 and PWR2, each fire was divided into sections that are described by

fitting the best geometric shape (e.g. ellipse to represent the main run of the fire). For these

geometric shapes, the fire length and width were measured in a GIS platform, and the

corresponding length-to-breadth ratio and fire area were calculated (Fig. 2). While each

fire does not follow a precise shape, this method was the most consistent and efficient at

encapsulating and representing each fire event. Fire start and end times of the ellipse and

blow-out were also necessary to calculate the rate of spread (R) of each part of the fire.

The average fine fuel load (w) was extracted from either the literature or the modelled

data for the fire-affected area and assumed to equal the available fuel. For the heat yield

(h), 20,000 kJ/kg is regarded as a reasonable average for the range of fuels commonly

consumed by bushfires (Luke and McArthur 1978). Following Nelson and Adkins (1986),

this was corrected for a nominal 20 % energy loss due to radiation and a nominal 5 % loss

due to the evaporation of moisture (assuming a moisture content of 5 %) from Table 3.2 in

Byram (1959). The power and intensity values were then calculated using the various

dimension measurements, rate of spread, fuel load estimates and heat yield. Finally, the

average slope was calculated by taking the mean slope within the fire perimeter in a GIS.

Average values over the fire were used because the position of the losses was largely

unknown. For the power variables, the total power from ellipse and blow-out was used.

However, for fires with triangular blow-outs, PWR1 was not applicable, as a characteristic

distance for a triangular blow-out is hard to determine. For rate of spread and intensity, the

maximum ROS and IB over the ellipse and blow-out were used to be consistent with using

Fig. 2 One example of applying
shapes to actual fire events, in
this case the Murrindindi fire:
B is breadth of ellipse, L is length
of ellipse, BB is the breadth of the
blow-out (in this case a
rectangle), and LB is the length of
the blow-out
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the highest FDI values. As PWR1 could not be calculated for triangular blow-outs, only

data with PWR1 values were used for comparison of variables.

3.11 Data accuracy classification system

The data were classified into categories that represented the reliability and uncertainties of

the data used in the analysis (Table 1). These classifications were based on previous studies

such as Cheney et al. (1998) and Bushfire CRC (2009). The numerical weights associated

with each category were estimates of the relative reliability determined when setting up

the database. These weights were used in the statistical analysis of the relationships,

as described in the statistical methods section.

3.12 Statistical methods

The aim was to establish whether there was a relationship between any of the FDIs (raw or

adjusted) or any of the measures of the strength of the fire (the independent variable x) and

community loss (the dependent variable Y), and if so, which measure of strength (or FDI)

gave the strongest relationship.

The data were analysed using generalised linear models (McCullagh and Nelder 1989).

To deal with the overly large variation (overdispersion) often found in count data, a quasi-

Poisson was assumed. Another possible model that can cope with overdispersion is the

negative binomial model, but as pointed out by Ver Hoef and Boveng (2007), the quasi-

Poisson model gives more weight to larger losses. Since it is critical to model high losses

accurately, the quasi-Poisson model was considered to be preferable.

In addition to overly large variation, count data may contain more zeros than would be

allowed for by the standard distributions, and there is also a possibility of underrepre-

sentation of zeros because of the bias towards including fires with some losses in the

database. To deal with these situations, a hurdle model (Mullahy 1986; Zeileis et al. 2008)

was used. In the hurdle model, there are two component models: a truncated count model

that is used for the positive counts and a hurdle component that models zero versus positive

counts. In the case of fatalities, for example, the hurdle model may be interpreted as there

being one process that determines whether there was a fatality on a fire and another process

that determines how many fatalities there were, given that there was at least one fatality.

For the count model with two regressor variables x1 and x2, the regression equation with

a log link is

logðlÞ ¼ g ¼ b0 þ b1x1 þ b2x2; ð12Þ

where l is the conditional mean of Y, and b0, b1 and b2 are regression coefficients.

A binomial model was used for the zero-hurdle component. For two regression variables,

this is

log½p=ð1� pÞ� ¼ g� ¼ c0 þ c1x1 þ c2x2; ð13Þ

where p is the probability of a non-zero loss, and c0, c1, and c2 are regression coefficients.

For the hurdle model with log link, the mean regression relationship is given by

logðMÞ ¼ gþ logð1� fzð0; pÞÞ � logð1� fcð0; lÞÞ; ð14Þ

where L is the mean loss, g is the function of the regression coefficients in Eq. 12, fz(0,p)

is the probability of no losses in the zero-hurdle model, and fz(0, l) is the probability of no
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losses in the positive count model. For example, in the case of the hurdle model with a

Poisson positive count model and a binomial zero-hurdle model, fz(0, p) = (1-p) and fz(0,

l) = exp(-l). Equation 14 is used to predict mean loss.

The software did not allow a quasi-Poisson hurdle model. However, the estimates of the

coefficients from the quasi-Poisson model are the same as those for the Poisson model, but

the standard errors are larger (Agresti 2002). Thus, the hurdle Poisson model was used to fit

the data, and the standard errors were calculated using the sandwich covariance matrix

estimator (White 1994), to test for the significance of the coefficients. The models were

fitted using the software R (R Development Core Team 2011) with the extra packages pscl
(Jackman 2011), lmtest (Zeileis and Hothorn 2002) and sandwich (Zeileis 2004, 2006)

included for analysis of the hurdle model and for the sandwich covariance estimator.

The economic loss data were continuous and highly skewed to the right. One method of

analysing this type of data is to use a generalised linear model with a Gaussian distribution

and a log link which essentially assumes a Gaussian distribution of the logarithm of the

data. On the other hand, economic loss is highly correlated with house loss and fatalities.

As an approximation, the economic loss was rounded to the nearest million dollars

and hurdle Poisson models were fitted, as the Gaussian model gave poor regression

diagnostics.

The models were assessed using three goodness of fit statistics: the root mean squared

error (RMSE), the mean bias error (MBE) (Willmott 1982), and for a non-dimensional

standardised measure of goodness of fit, the correlation, r, between the observed values and

the fitted model predictions, as recommended by Agresti (2002).

Untransformed regressor variables were fitted as this provided better error statistics than

using a logarithmic transformation. The logarithm of house or population exposure (fire

area multiplied by density) was used as a covariate regressor variable depending on

whether the independent variable was house loss, fatalities or economic loss. For com-

parison of models, the regressions were unweighted (apart for economic loss that had

different reliabilities in the Y variable), but in the final model development, the regressions

were weighted. The weighting was done using the product of the relevant fuel, fire

behaviour and density weights (as given in Table 1) as this was presumed to reflect the way

the errors compounded in the variables. If spread rate was estimated from the McArthur

equations, or if one of the FDIs (raw or adjusted) was the regressor variable, the weather

reliability weighting was included in the weighting. Sensitivity to the weighting was

examined by fitting a non-weighted model and comparing the results.

The analyses were supplemented by residual plots: residuals against fitted values,

normal quantile plots of the standardised deviance residuals, square root standardised

deviance residuals against fitted values and standardised Pearson residuals against leverage

(see Davison and Snell (1991) for details).

4 Results: statistical relationship between loss and fire-related variables

4.1 House loss

Table 2 shows the results of fitting hurdle Poisson models using each fire behaviour

measure in turn as the independent variable. The fuel-adjusted FFDI and GFDI were better

than the unadjusted values, but the slope-adjusted FDIs were worse. The best predictors

were FFDI, GFDI, IB, PWR1(0.50), PWR1(0.75) and PWR2. Of these, the performance of

PWR1(0.75) was marginally the best. PWR1 improved with increasing a (smaller fraction
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of the perimeter) and was better than PWR2 for a[ 0.25. ROS was a relatively poor

predictor.

In the following analyses for house loss, the best models for the combined data set are

developed using weighted data, as appropriate, and the terms in the zero-hurdle model are

tested for significance.

4.1.1 Using PWR1(a = 0.75) as the predictor variable

A hurdle Poisson model was fitted using PWR1(0.75) as the predictor variable. The

positive count component of the hurdle model was of the form

gH ¼ b0 þ b1PWR1ð0:75Þ þ b2 logðHEXPÞ; ð15Þ

where the subscript H indicates house loss, HEXP is the house exposure (fire area times

house density), and b0, b1 and b2 are regression coefficients. Note that to predict the mean

number of houses lost, LH, it is necessary to add the hurdle component to the right hand

side of Eq. 15 as in Eq. 14. Only the covariate was significant in the zero-hurdle model. All

coefficients in the positive count part of the hurdle model were significant (using a

sandwich test for the Poisson model). The predicted values are plotted against the observed

values in Fig. 3.

The goodness of fit statistics (and for the models developed for fatalities and economic

loss) are given in Table 3, and the regression coefficients (and their standard errors) are

given in Table 4 (V is the fire-related variable considered and CV is the risk covariate

used).

4.1.2 Effect of weighting

The effect of weighting was examined on the house loss model in Eq. 15 by comparing the

weighting used with equal weighting. The change had only a small effect on the resulting

model coefficients. The coefficient for the intercept, for instance, changed from 1.4873 to

Table 2 Correlation (r), RMSE
and MBE between observed and
predicted values for models pre-
dicting house loss from house
exposure and fire-related vari-
ables (unweighted)

r RMSE MBE

n = 67

FFDI 0.71 153 -0.1

FFDIF 0.86 109 1.1

FFDIS 0.59 185 -0.2

FFDIFS 0.70 162 0.6

GFDI 0.78 135 0.8

GFDIF 0.87 105 2.2

GFDIS 0.66 169 0.5

GFDIFS 0.76 144 1.5

ROS 0.70 155 0.6

IB 0.87 108 0.7

PWR1(0.25) 0.71 157 0.0

PWR1(0.50) 0.86 110 0.0

PWR1(0.75) 0.88 102 0.0

PWR2 0.81 127 0.0
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1.4591, a difference of about 2 %. The r values, RMSE and MAE were quite similar, but

the bias was less in the unweighted model (1.9 as opposed to -7.7).

4.1.3 Using FFDIF as the predictor variable

A model was also created using FFDIF. It was used in preference to GFDIF as there are

generally more house losses in forested areas. The positive count component of the hurdle

model was of the form

gH ¼ b0 þ b1FFDIFþ b2 logðHEXPÞ; ð16Þ
Only the covariate was significant in the zero-hurdle part of the model. The goodness of

fit statistics were similar to those of Eq. 15: r and the RMSE were slightly worse, but the

MAE and the MBE were slightly better. Predicted values are plotted against the observed

values in Fig. 4.

Fig. 3 Predicted values plotted against observed values for the prediction equation for house loss in terms
of PWR1(0.75) and HEXP (Eq. 15). Fire reliability is shown by shading in the symbols: black filled circles
weight greater or equal to 0.55, grey filled circles weight less than 0.55 and greater or equal to 0.35, and
open circles weight less than 0.35

Table 3 Goodness of fit statistics for the fitted regression models in Eqs. 15, 16, 17 and 18

n r RMSE MAE MBE

House loss versus HEXP and PWR1(0.75) (Eq. 15) 67 0.88 106 60 -7.7

House loss versus HEXP and FFDIF (Eq. 16) 74 0.86 107 57 -3.5

Fatalities versus PEXP and PWR1(0.75) (Eq. 17) 70 0.96 4 3 -0.04

Economic loss versus HEXP and PWR1(0.75) (Eq. 18) 50 0.98 36 24 4.3
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4.2 Fatalities

Models were fitted using each fire-related variable in turn, and the results are shown in

Table 5. Again, the fuel-adjusted FFDI and GFDI were better than the unadjusted values,

but the slope-adjusted FDIs were generally worse. The best predictors were FFDI, GFDI,

Fig. 4 Predicted values plotted against observed values for the prediction equation for house loss in terms
of FFDIF and HEXP (Eq. 16). Fire reliability is shown by shading in the symbols: black filled circles weight
greater or equal to 0.55, grey filled circles weight less than 0.55 and greater or equal to 0.35, and open
circles weight less than 0.35

Table 5 Correlation (r), RMSE
and MBE between observed and
predicted values for models pre-
dicting fatalities from population
exposure and fire-related vari-
ables (unweighted)

r RMSE MBE

n = 70

FFDI 0.66 12 0.2

FFDIF 0.82 10 0.2

FFDIS 0.57 14 0.0

FFDIFS 0.68 12 0.0

GFDI 0.81 10 0.4

GFDIF 0.87 9 0.3

GFDIS 0.67 12 0.1

GFDIFS 0.75 11 0.1

ROS 0.53 14 0.0

IB 0.72 12 0.2

PWR1(0.25) 0.74 11 0.0

PWR1(0.50) 0.93 6 0.0

PWR1(0.75) 0.96 5 0.0

PWR2 0.88 8 0.0
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PWR1(0.50), PWR1(0.75) and PWR2. Of these, the performance of PWR1(0.75) was the

best. PWR1 improved with increasing a and was better than PWR2 for a[ 0.25. ROS was

a relatively poor predictor. IB was similar to the worst of the alternative formulations for

PWR1. Note that the data set was dominated by three high fatality fires (Murrindindi,

Kilmore and Black Friday—Central and North); thus, any model for fatalities may not be

robust. A model was created using PWR1(0.75), but it should be regarded with caution.

The fitted model was of the form

gF ¼ b0 þ b1PWR1ð0:75Þ þ b2 logðPEXPÞ; ð17Þ

where PEXP is the population exposure. None of the hurdle model coefficients were

significant so a quasi-Poisson model was used. The predicted values are plotted against the

observed values in Fig. 5.

4.3 Economic loss

House exposure performed slightly better than population exposure, so it was used as a

covariate. Loss was also weighted by the economic reliability given in Table 1. Models

were fitted using each fire variable in turn, and the results are shown in Table 6. Again, the

fuel- and slope-adjusted FFDI and GFDI were better than the unadjusted values. In this

case, the slope-adjusted FDIs had similar predictive power to the fuel-adjusted FDIs. The

best predictors were the power variables. PWR1 improved with increasing a and was again

better than PWR2 for a[ 0.25. ROS and IB were relatively poor predictors. The combined

data set was dominated by two economic loss fires (Murrindindi and Kilmore); thus, any

Fig. 5 Predicted values plotted against observed values for the prediction equation for fatalities in terms of
PWR1(0.75) and PEXP (Eq. 17). Fire reliability is shown by shading in the symbols: black filled circles
weight greater or equal to 0.55, grey filled circles weight less than 0.55 and greater or equal to 0.35, and
open circles weight less than 0.35
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model for economic loss may not be robust. A model was created using PWR1(0.75), but it

should be regarded with caution.

The positive count regression model was of the form

gE ¼ b0 þ b1PWR1ð0:75Þ þ b2 logðHEXPÞ; ð18Þ

where the subscript E refers to economic loss that is measured in millions of dollars. For

this model, only the intercept was significant in the zero-hurdle model. The predicted

values are plotted against the observed values for this model in Fig. 6.

5 Discussion

5.1 Fire characterisation and limitations

Effort was made to obtain the most reliable data for each fire, but in some cases, this was

not possible. Continued development and improvement in the data quality will be made,

which may alter some of the findings from this research. To add significant value and

improve its use for analysis, additional bushfire case studies should be added, particularly

from the national and international scene. The lack of fires from other states obviously

biases the analysis as the sampling is not random. The analysis is also biased because a

disproportionately small number of fires that did not cause damage are in the database.

These fires would be generally smaller fires, and the bias would affect the estimation of the

hurdle model parameters, in that the probability of no losses would be underestimated. In

addition to this, the modelling is conditional on there being an ignition. This could be

extended in future work.

The method of down-weighting poor data is crude and neither takes account of whether

the error was in the dependent or independent variable nor uses an estimate of the mag-

nitude of the error. Doing these things would complicate the analysis considerably. Future

analysis should cover these aspects.

Table 6 Correlation (r), RMSE
and MBE between observed and
predicted values for models pre-
dicting economic loss from house
exposure and fire-related vari-
ables (unweighted)

r RMSE MBE

n = 50

FFDI 0.73 132 -10.1

FFDIF 0.96 55 -4.7

FFDIS 0.92 76 -5.6

FFDIFS 0.96 57 -4.3

GFDI 0.83 107 -7.2

GFDIF 0.96 52 -4

GFDIS 0.97 51 -3.6

GFDIFS 0.96 57 -4.1

ROS 0.47 174 -20.9

IB 0.72 134 -13.7

PWR1(0.25) 0.97 47 -3.4

PWR1(0.50) 0.98 35 -1.3

PWR1(0.75) 0.98 35 -0.3

PWR2 0.98 35 -1.5
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Using the independent variable (power of the fire or the adjusted FFDI) in a linear form

in the equation for the logarithm of loss (such as Eq. 15) results in an exponential form of

the independent variable in the prediction equation for loss. Thus, non-zero loss is pre-

dicted for zero-values of the independent variable which is obviously incorrect. The

problem is exacerbated as the values of the covariate (density or exposure) are increased.

However, it is not unusual to get quite high losses for small values of power when the

house or population density is high or the fire area is large. As an example, the Como/

Jannali fire had a low value of PWR1(0.75) of 6.7 GW but a high house density of 145

houses km-2 (median 1.57 in the data set). It had an economic loss of 51 million dollars

(median 10 in the data set), and the model in Eq. 18 predicted 34 million dollars.

To develop a more thorough understanding of the impacts of fire on communities, future

estimates of the power of a fire would benefit from focusing on the region of the fire that

caused the damage to a community. An estimate of the power of the fire along a given

isochrone could be obtained by integrating Eq. 7 in Catchpole et al. (1982) for the rate of

spread (and hence intensity) of a point on an arbitrary fire front along the isochrone. Also,

more complete measurements of fire behaviour could be made by improving fuel accu-

mulation and fuel load models and by adding fuel estimates for near surface and elevated

fuel components, medium woody debris, canopy and live/dead components like those

modelled by Keith et al. (2010). This would better quantify the energy release rate of the

fire as it considers all available fuels rather than only surface fuels. Furthermore, the

vertical atmospheric structure, and how that plays a role in influencing the power of fire

(Potter 2002) should be incorporated. Other methods of estimating the energy released

during a fire event should also be further investigated, such as those methods developed by

Wooster et al. (2005), which estimate fire radiative energy (FRE) and fire radiative power

Fig. 6 Predicted values plotted against observed values for the prediction equation for economic loss in
terms of PWR1(0.75) and HEXP (Eq. 18). Fire reliability is shown by shading in the symbols: black filled
circles weight greater or equal to 0.55, grey filled circles weight less than 0.55 and greater or equal to 0.35,
and open circles weight less than 0.35

410 Nat Hazards (2012) 63:391–415

123



(FRP) from remotely sensed data. Finally, how the scale of a fire event alters the ability of

mitigation strategies such as planned burning to alter impacts, and of communities and fire

agencies to respond are also important gaps in our knowledge that need to be addressed.

5.2 Performance of the predictor variables

This paper introduced two new methodologies to estimate fire severity, or potential

destructive force, through measuring the power of fire. Here, an assessment of the variables

used in this paper is made, especially of how they compared and performed with respect to

predicting community loss.

5.2.1 FFDI and GFDI

Generally, FFDI and GFDI were found to perform poorly in relation to community loss

when compared with the adjusted values and with the measures of power. This is almost

certainly due to inherent limitations of the FFDI and GFDI which are meant for broadscale

application and solely rely on meteorological input data and are therefore not suitable for a

range of fuel loads and topographic regions. It should also be noted that FFDI and GFDI

were designed as a predictor of fire initiation, fire spread, ease of suppression and impact

on forest and rural farmland values, and not for community loss.

5.2.2 FFDI and GFDI adjusted

The adjustment to the FFDI and GFDI which gave the best predictions was that for fuel

alone. Adjusting for slope and fuel provided better predictions than the unadjusted indices

but generally not as well as those for fuel alone. The problem may be that the adjustment

for average slope over the whole fire does not capture the fire behaviour at the site of the

losses. The fuel-adjusted indices were almost equal to or better than the power variables in

predicting community loss.

5.2.3 Byram’s intensity and rate of spread

Byram’s fireline intensity has been shown to have great practical value as an indicator of

fire severity for fire control purposes (Catchpole et al. 1982), and ecologically, the index

has been used to relate damage of trees to fire severity (McArthur and Cheney 1966; Van

Wagner 1973). For house loss, it was a possible contender as a predictor variable, but it

was not quite as good as the best of the power variables. Rate of spread was a generally a

worse predictor of loss than the fuel-adjusted FDIs, IB or the power variables.

5.2.4 Power of the fire

PWR1(0.75) was the best predictor of community loss, although FFDIF came close to it for

predicting house loss. It was always slightly better than PWR2. The predictive power

increased as less of the perimeter was used, but as it was better than IB that only considers

unit length of the perimeter, there is obviously merit in including some characteristic

length which is assumed to have burned at a reasonably high intensity.

PWR1(0.75) needs predictions of time since ignition and fire area, and the exposure

covariate model needs predictions of fire area. Emerging tools such as Phoenix RapidFire,
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which is a research and development tool developed by the University of Melbourne and

Bushfire CRC, can now be used to estimate the area and time since ignition of a fire

through simulation and fire behaviour prediction models. This could be used to provide

predictions of possible loss on a local area basis.

5.3 Implications for developing a bushfire severity scale

The current FDRS based on FFDI and GFDI is not adequate for predicting community loss.

This report suggested simple modifications to the FFDI through incorporating slope and

fuel-loading factors (especially fuel) to increase the predictive power of FFDI. Further-

more, power of fire measures, with continued improvement, could be further explored as a

basis for developing a bushfire severity scale. This paper provides an initial insight into

establishing a new methodology to describe fire through reconstructing the power released

at certain parts of the fire. However, to fully understand and make use of this methodology

as a fire severity scale, it is necessary to move from reconstruction to prediction.

The implications that this research, combined with further work, will have on policy

decisions is considerable. The ability to calculate the power of the fire, and then at a local scale

use it to predict the number of fatalities and house losses (within a range) will have impli-

cations for providing communities with more targeted advice to leave in advance of Code Red

bushfire days and therefore may result in reducing the number of fatalities. Furthermore, these

finding could have implications on fuel management such as prescribed burning for reducing

fuel hazard and fuel loads therefore impacting the destructive power of the fire.

Predicting the behaviour of natural phenomena such as fire requires robust fire

behaviour models. Computationally, local fire behaviour prediction is becoming more

achievable through advancements such as Phoenix RapidFire, but the predictions produced

are still only a function of the quality of the data and models that underpin them. This

research highlighted the importance of this knowledge in informing fire agencies and

community decision-making. Such knowledge is especially important when events of

unprecedented scale and magnitude occur. Additionally, events such as those on Black

Saturday will invariably occur in a warming and drying climate (Lucas et al. 2007), and

making predictions about what might happen involves considerable uncertainty. This

uncertainty can be reduced if a solid scientific base can be built that captures what is

known from past events (which is not currently the case), and a contemporary view and

understanding of fire, how it behaves, how it can be described, and how it can impact

communities are therefore needed.

The paper highlights the need for further research into a contemporary fire danger rating

system that not only meets traditional fire agency needs relating to preparedness decision-

making and impact of forest and rural values, but also includes the potential for bushfires to

impact communities. It shows that physical measures that relate to community impact exist

and are an improvement on existing FDIs and the standard Byram’s fireline intensity. It

also confirms that bushfire behaviour (rate of spread, fire shape and size, fuel consumption

and power) and community (settlement patterns) attributes affect bushfire risk and that

improved science and data will improve fire danger rating and risk assessments.

6 Conclusion

Developing more robust theories and models of fire behaviour and the impacts of fire on

communities is critical for current and future fire risk management. To date, much of
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Australia’s fire history had not been collated and considered in an integrated way, and yet,

this information provides an insight in to the nature and intensity of fires that result in the

loss of life and assets or have the potential to do so. This study compiled the most

comprehensive database of observations and estimates on fires that have occurred in

Victoria and elsewhere in Australia available today. While vast improvements could be

made to both the data analysed and the measurements of power of fire, results from the

statistical analysis suggest that the current FDRS could be adjusted to improve the warning

system, so it better relates to community loss. However, a better approach would be to

continue exploring how to measure the power of fire and begin investigating how to base a

new bushfire threat warning system on these measures. Given the importance of accurately

predicting bushfire threats, improving the measures and predictability of fire power should

be a priority in bushfire research in Australia.
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