46 research outputs found

    Myocardial strain and symptom severity in severe aortic stenosis: insights from cardiovascular magnetic resonance

    Get PDF
    Background: Symptomatic severe aortic stenosis (AS) is a class I indication for replacement in patients when left ventricular ejection fraction (LVEF) is preserved. However, symptom reporting is often equivocal and decision making can be challenging. We aimed to quantify myocardial deformation using cardiovascular magnetic resonance (CMR) in patients classified by symptom severity. Methods: Forty-two patients with severe AS referred to heart valve clinic were studied using tagged CMR imaging. All had preserved LVEF. Patients were grouped by symptoms as either “none/mild” (n=21, NYHA class I, II) or “significant” (n=21, NYHA class III, IV, angina, syncope) but were comparable for age (72.8±5.4 vs. 71.0±6.8 years old, P=0.345), surgical risk (EuroSCORE II: 1.90±1.7 vs. 1.31±0.4, P=0.302) and haemodynamics (peak aortic gradient: 55.1±20.8 vs. 50.4±15.6, P=0.450). Thirteen controls matched in age and LVEF were also studied. LV circumferential strain was calculated using inTag© software and longitudinal strain using feature tracking analysis. Results: Compared to healthy controls, patients with severe AS had significantly worse longitudinal and circumferential strain, regardless of symptom status. Patients with “significant” symptoms had significantly worse peak longitudinal systolic strain rates (−83.352±24.802%/s vs. −106.301±43.276%/s, P=0.048) than those with “no/mild” symptoms, with comparable peak longitudinal strain (PLS), peak circumferential strain and systolic and diastolic strain rates. Conclusions: Patients with severe AS who have no or only mild symptoms exhibit comparable reduction in circumferential and longitudinal fibre function to those with significant symptoms, in whom AVR is clearly indicated. Given these findings of equivalent subclinical dysfunction, reportedly borderline symptoms should be handled cautiously to avoid potentially adverse delays in intervention

    Myocardial effects of aldosterone antagonism in heart failure with preserved ejection fraction

    Get PDF
    Background: Spironolactone may have prognostic benefit in selected patients with heart failure with preserved ejection fraction. This study assessed the myocardial tissue effects of spironolactone in heart failure with preserved ejection fraction. Methods and Results: A 1:1 randomized controlled study of 6 months of spironolactone versus control in heart failure with preserved ejection fraction. The primary outcome was change in myocardial extracellular volume fraction by cardiovascular magnetic resonance as a surrogate of diffuse fibrosis. Of 55 randomized patients, 40 (20 women; age, 75.2±5.9 years) completed follow-up (19 treatment, 21 control). A significant change in extracellular volume over the study period was not seen (treatment, 28.7±3.7% versus 27.7±3.4% [P=0.14]; controls, 27.6±3.4% versus 28.3±4.4% [P=0.14]); however, the rate of extracellular volume expansion was decreased by spironolactone (−1.0±2.4% versus 0.8±2.2%). Indexed left ventricular mass decreased with treatment (104.4±26.6 versus 94.0±20.6 g/m 2; P=0.001) but not in controls (101.4±29.4 versus 104.0±32.8 g/m 2; P=0.111). Extracellular mass decreased by 13.8% (15.1±4.8 versus 13.0±3.4 g/m 2; P=0.003), and cellular mass decreased by 8.3% (37.6±10.0 versus 34.3±7.9 g/m 2; P=0.001) with spironolactone, but was static in controls. Conclusions: Spironolactone did not lead to significant change in extracellular volume. However, spironolactone did decrease rate of extracellular expansion, with a decrease in the mass of both cellular and extracellular myocardial compartments. These data point to the mechanism of action of spironolactone in heart failure with preserved ejection fraction, including a direct tissue effect with a reduction in rate of myocardial fibrosis

    Acute Infarct Extracellular Volume Mapping to Quantify Myocardial Area at Risk and Chronic Infarct Size on Cardiovascular Magnetic Resonance Imaging

    Get PDF
    Background—Late gadolinium enhancement (LGE) imaging overestimates acute infarct size. The main aim of this study was to investigate whether acute extracellular volume (ECV) maps can reliably quantify myocardial area at risk (AAR) and final infarct size (IS). Methods and Results—Fifty patients underwent cardiovascular magnetic resonance imaging acutely (24–72 hours) and at convalescence (3 months). The cardiovascular magnetic resonance protocol included cines, T2-weighted imaging, native T1 maps, 15-minute post-contrast T1 maps, and LGE. Optimal AAR and IS ECV thresholds were derived in a validation group of 10 cases (160 segments). Eight hundred segments (16 per patient) were analyzed to quantify AAR/IS by ECV maps (ECV thresholds for AAR is 33% and IS is 46%), T2-weighted imaging, T1 maps, and acute LGE. Follow-up LGE imaging was used as the reference standard for final IS and viability assessment. The AAR derived from ECV maps (threshold of >33) demonstrated good agreement with T2-weighted imaging–derived AAR (bias, 0.18; 95% confidence interval [CI], −1.6 to 1.3) and AAR derived from native T1 maps (bias=1; 95% CI, −0.37 to 2.4). ECV demonstrated the best linear correlation to final IS at a threshold of >46% (R=0.96; 95% CI, 0.92–0.98; P<0.0001). ECV maps demonstrated better agreement with final IS than acute IS on LGE (ECV maps: bias, 1.9; 95% CI, 0.4–3.4 versus LGE imaging: bias, 10; 95% CI, 7.7–12.4). On multiple variable regression analysis, the number of nonviable segments was independently associated with IS by ECV maps (β=0.86; P<0.0001). Conclusions—ECV maps can reliably quantify AAR and final IS in reperfused acute myocardial infarction. Acute ECV maps were superior to acute LGE in terms of agreement with final IS. IS quantified by ECV maps are independently associated with viability at follow-up

    The impact of trans-catheter aortic valve replacement induced leftbundle branch block on cardiac reverse remodeling

    Get PDF
    Background Left bundle branch block (LBBB) is common following trans-catheter aortic valve replacement (TAVR) and has been linked to increased mortality, although whether this is related to less favourable cardiac reverse remodeling is unclear. The aim of the study was to investigate the impact of TAVR induced LBBB on cardiac reverse remodeling. Methods 48 patients undergoing TAVR for severe aortic stenosis were evaluated. 24 patients with new LBBB (LBBB-T) following TAVR were matched with 24 patients with a narrow post-procedure QRS (nQRS). Patients underwent cardiovascular magnetic resonance (CMR) prior to and 6 m post-TAVR. Measured cardiac reverse remodeling parameters included left ventricular (LV) size, ejection fraction (LVEF) and global longitudinal strain (GLS). Inter- and intra-ventricular dyssynchrony were determined using time to peak radial strain derived from CMR Feature Tracking. Results In the LBBB-T group there was an increase in QRS duration from 96 ± 14 to 151 ± 12 ms (P < 0.001) leading to inter- and intra-ventricular dyssynchrony (inter: LBBB-T 130 ± 73 vs nQRS 23 ± 86 ms, p < 0.001; intra: LBBB-T 118 ± 103 vs. nQRS 13 ± 106 ms, p = 0.001). Change in indexed LV end-systolic volume (LVESVi), LVEF and GLS was significantly different between the two groups (LVESVi: nQRS -7.9 ± 14.0 vs. LBBB-T -0.6 ± 10.2 ml/m2, p = 0.02, LVEF: nQRS +4.6 ± 7.8 vs LBBB-T -2.1 ± 6.9%, p = 0.002; GLS: nQRS -2.1 ± 3.6 vs. LBBB-T +0.2 ± 3.2%, p = 0.024). There was a significant correlation between change in QRS and change in LVEF (r = -0.434, p = 0.002) and between change in QRS and change in GLS (r = 0.462, p = 0.001). Post-procedure QRS duration was an independent predictor of change in LVEF and GLS at 6 months. Conclusion TAVR-induced LBBB is associated with less favourable cardiac reverse remodeling at medium term follow up. In view of this, every effort should be made to prevent TAVR-induced LBBB, especially as TAVR is now being extended to a younger, lower risk population
    corecore