3,631 research outputs found

    Anisotropic Properties of some Nematic Liquids

    Get PDF

    Room temperature soft ferromagnetism in the nanocrystalline form of YCo2 - a well-known bulk Pauli paramagnet

    Full text link
    The Laves phase compound, YCo2, is a well-known exchange-enahnced Pauli paramagnet. We report here that, in the nanocrystalline form, this compound interestingly is an itinerant ferromagnet at room temperature with a low coercive-field. The magnitude of the saturation moment (about 1 Bohr-magneton per formula unit) is large enough to infer that the ferromagnetism is not a surface phenomenon in these nanocrystallites. Since these ferromagnetic nanocrystallines are easy to synthesize with a stable form in air, one can explore applications, particularly where hysteresis is a disadvantage

    Aerothermal modeling program, phase 2

    Get PDF
    The main objectives of the Aerothermal Modeling Program, Phase 2 are: to develop an improved numerical scheme for incorporation in a 3-D combustor flow model; to conduct a benchmark quality experiment to study the interaction of a primary jet with a confined swirling crossflow and to assess current and advanced turbulence and scalar transport models; and to conduct experimental evaluation of the air swirler interaction with fuel injectors, assessments of current two-phase models, and verification the improved spray evaporation/dispersion models

    Processing of ilmenite (FeOTiO2) for value added products

    Get PDF
    Beach Placer Ilmenite is an important source for production of titanium metal, titania slag and pigment grade titanium dioxide. Besides, these well known applications for which Ilmenite is mined and processed, there are other emerging processes that are being tried for obtaining highvalue products. Synthesis of Ilmenite based materials for varistor applications and direct electrochemical reduction of Ilmenite to produce ferrotitanium are two such attempts being discussed in this work. In this paper, recent efforts undertaken to study the electrical and magnetic characteristics are discussed. Ilmenite, FeTiO 3 , is one of the mixed-valence transition metalbearing minerals, inwhich Fe can be in two different oxidation states, Fe 2+ and Fe 3+ .. Similarly, Ti can be in Ti 3+ and Ti 4+ .Ilmenite is inherently suitable for making Varistors, which are devices, used for limiting the transient voltage surges in a circuit. Varistors produced from Ilmenite can withstand harsh environments seen in nuclear reactors and outerspace. Electrochemical reduction of Ilmenite can be used to prepare ferrotitanium directly without any reductant. The process essentially involves removal of oxygen from the mineral through electrolytic action using calcium chloride as electrolyte and graphite as anode. At a temperature of 950°C, it is shown to be possible that all the oxygen can be removed from the Ilmenite sample, which passes through the electrolyte, to form CO/CO 2 at the anode. The process has immense potential for cost effective production of titanium metal as well. Results of the above developmental works are presented in this paper

    Classical Dynamics of Anyons and the Quantum Spectrum

    Full text link
    In this paper we show that (a) all the known exact solutions of the problem of N-anyons in oscillator potential precisely arise from the collective degrees of freedom, (b) the system is pseudo-integrable ala Richens and Berry. We conclude that the exact solutions are trivial thermodynamically as well as dynamically.Comment: 19 pages, ReVTeX, IMSc/93/0

    Evolution of Magnetism in Single-Crystal Honeycomb Iridates

    Get PDF
    We report the successful synthesis of single-crystals of the layered iridate, (Na1x_{1-x}Lix_{x})2_2IrO3_3, 0x0.90\leq x \leq 0.9, and a thorough study of its structural, magnetic, thermal and transport properties. The new compound allows a controlled interpolation between Na2_2IrO3_3 and Li2_2IrO3_3, while maintaing the novel quantum magnetism of the honeycomb Ir4+^{4+} planes. The measured phase diagram demonstrates a dramatic suppression of the N\'eel temperature, TNT_N, at intermediate xx suggesting that the magnetic order in Na2_2IrO3_3 and Li2_2IrO3_3 are distinct, and that at x0.7x\approx 0.7, the compound is close to a magnetically disordered phase that has been sought after in Na2_2IrO3_3 and Li2_2IrO3_3. By analyzing our magnetic data with a simple theoretical model we also show that the trigonal splitting, on the Ir4+^{4+} ions changes sign from Na2_2IrO3_3 and Li2_2IrO3_3, and the honeycomb iridates are in the strong spin-orbit coupling regime, controlled by \jeff=1/2 moments.Comment: updated version with more dat

    A Novel Approach Based on Decreased Dimension and Reduced Gray Level Range Matrix Features for Stone Texture Classification

    Get PDF
    The human eye can easily identify the type of textures in flooring of the houses and in the digital images visually.  In this work, the stone textures are grouped into four categories. They are bricks, marble, granite and mosaic. A novel approach is developed for decreasing the dimension of stone image and for reducing the gray level range of the image without any loss of significant feature information. This model is named as “Decreased Dimension and Reduced Gray level Range Matrix (DDRGRM)” model. The DDRGRM model consists of 3 stages.  In stage 1, each 5×5 sub dimension of the stone image is reduced into 2×2 sub dimension without losing any important qualities, primitives, and any other local stuff.  In stage 2, the gray level of the image is reduced from 0-255 to 0-4 by using fuzzy concepts.  In stage 3, Co-occurrence Matrix (CM) features are derived from the DDRGRM model of the stone image for stone texture classification.  Based on the feature set values, a user defined algorithm is developed to classify the stone texture image into one of the 4 categories i.e. Marble, Brick, Granite and Mosaic. The proposed method is tested by using the K-Nearest Neighbor Classification algorithm with the derived texture features.  To prove the efficiency of the proposed method, it is tested on different stone texture image databases.  The proposed method resulted in high classification rate when compared with the other existing methods

    Electron paramagnetic resonance evidence for Jahn-Teller glasses

    Get PDF
    Single crystal E.P.R. studies of copper as a dopant in lithium potassium sulphate, lithium ammonium sulphate and lithium sodium sulphate have been carried out from room temperature down to 77K. The three Jahn-Teller (JT) systems behave very similarly to one another. The room temperature dynamic JT spectra with giso = 2.19 ± 0.01 and Aiso = ±(33 ± 4)× 10-4 cm-1 transform around 247 K to spectra characterized by randomly frozen-in axial strains with g = 2.4307 ± 0.0005, g = 2.083 ± 0.001, A = ±(116 ± 2) × 10-4 cm-1 and A = ±(14 ± 4) ×10-4 cm-1. We proposed that the low temperature phase (below 247 K) of each of these systems provides an example of a Jahn-Teller glass

    Deep Learning based Cryptanalysis of Stream Ciphers

    Get PDF
    Conventional cryptanalysis techniques necessitate an extensive analysis of non-linear functions defining the relationship of plain data, key, and corresponding cipher data. These functions have very high degree terms and make cryptanalysis work extremely difficult. The advent of deep learning algorithms along with the better and efficient computing resources has brought new opportunities to analyze cipher data in its raw form. The basic principle of designing a cipher is to introduce randomness into it, which means the absence of any patterns in cipher data. Due to this fact, the analysis of cipher data in its raw form becomes essential. Deep learning algorithms are different from conventional machine learning algorithms as the former directly work on raw data without any formal requirement of feature selection or feature extraction steps. With these facts and the assumption of the suitability of employing deep learning algorithms for cipher data, authors introduced a deep learning based method for finding biases in stream ciphers in the black-box analysis model. The proposed method has the objective to predict the occurrence of an output bit/byte at a specific location in the stream cipher generated keystream. The authors validate their method on stream cipher RC4 and its improved variant RC4A and discuss the results in detail. Further, the authors apply the method on two more stream ciphers namely Trivium and TRIAD. The proposed method can find bias in RC4 and shows the absence of this bias in its improved variant and other two ciphers. Focusing on RC4, the authors present a comparative analysis with some existing methods in terms of approach and observations and showed that their process is more straightforward and less complicated than the existing ones
    corecore