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AbStrACt

Conventional cryptanalysis techniques necessitate an extensive analysis of non-linear functions defining the 
relationship of plain data, key, and corresponding cipher data. These functions have very high degree terms and make 
cryptanalysis work extremely difficult. The advent of deep learning algorithms along with the better and efficient 
computing resources has brought new opportunities to analyze cipher data in its raw form. The basic principle of 
designing a cipher is to introduce randomness into it, which means the absence of any patterns in cipher data. Due 
to this fact, the analysis of cipher data in its raw form becomes essential. Deep learning algorithms are different from 
conventional machine learning algorithms as the former directly work on raw data without any formal requirement 
of feature selection or feature extraction steps. With these facts and the assumption of the suitability of employing 
deep learning algorithms for cipher data, authors introduced a deep learning based method for finding biases in 
stream ciphers in the black-box analysis model. The proposed method has the objective to predict the occurrence of 
an output bit/byte at a specific location in the stream cipher generated keystream. The authors validate their method 
on stream cipher RC4 and its improved variant RC4A and discuss the results in detail. Further, the authors apply 
the method on two more stream ciphers namely Trivium and TRIAD. The proposed method can find bias in RC4 
and shows the absence of this bias in its improved variant and other two ciphers. Focusing on RC4, the authors 
present a comparative analysis with some existing methods in terms of approach and observations and showed that 
their process is more straightforward and less complicated than the existing ones.
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1. IntroDuCtIon
Deep Learning is a new field of machine learning 

techniques where the learning methods are generally based 
on the Artificial Neural Network framework. Deep learning, 
invariably known as deep neural networks, has a variety of 
architectures such as Recurrent Neural Network (RNN), Deep 
Belief Network (DBN), and Convolution Neural Network 
(CNN). These architectures are applied in diverse domains 
to solve different problems like natural language processing, 
machine translation, medical image processing, computer 
vision, etc.1,2. These deep learning architectures have produced 
excellent results in respective domains, which have sometimes 
outperformed human experts. Deep learning also has an 
extra edge over traditional machine learning algorithms due 
to its capability of representation learning. Representation 
learning is a term used in machine learning to denote a class 
of techniques that automatically discover the representations 
required for feature detection from raw data. Establishing 
representation learning techniques is motivated by the fact that 
any machine learning task, such as classification or regression, 
generally require input that is computationally convenient and 
meaningful to process. To summarise, deep learning is a class 
of machine learning algorithms3 that uses multiple hidden 

layers of artificial neurons, which helps feature learning from 
the raw input dataset.

There are many existing, well-established methods for 
cryptanalysis. However, the foremost step in applying these 
methods is to observe an inherent flaw in the cipher algorithm 
and then exploit it to mount the cryptanalytic attack, which 
is generally very complex. The advantage of deep learning 
methods to have automatic feature engineering capabilities 
from raw data can help to observe the flaw, as mentioned 
above. Sometimes it may also assist in the cryptanalysis task. 
Moreover, the stream cipher generated keystream should 
not have any biases. The adversaries can exploit the same in 
mounting cryptanalytic attacks on the cipher to get complete or 
partial information about the key or the plain data. So, before 
employing any of the available cryptanalytic techniques, which 
are very complicated in nature, it would be crucial to know 
such biases by using a deep learning approach that directly 
works over the raw data.

The application of machine learning in cryptography, 
especially of deep learning, has been explored in a very 
confined manner. Rivest, in his landmark survey paper4 

emphasised over the fact that how cryptography and machine 
learning contributed ideas and techniques to each other. 
He perceived machine learning and cryptanalysis as sister 
fields as both of them share the common goal of learning an 
unknown function from input-output pairs. Recently, Abadi 
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and Andersen5, established a milestone work when exploring 
whether, in a multi-agent system, neural networks can learn 
to use secret keys to protect information from other neural 
networks. Hesamifard et al.6 attended the problem of ensuring 
the privacy of raw data and developed new techniques for 
providing solutions to run deep neural networks over encrypted 
data. Picek et al.7 analysed the convolutional neural network’s 
performance for side-channel analysis while posing a problem 
to researchers whether the deep learning networks are better 
suited for side-channel analysis compared to other machine 
learning techniques. In other work, Wang8 carried out a side-
channel analysis of block cipher AES using deep learning. In 
latest developments, Gohr9 came up with improved attacks 
on round-reduced lightweight block cipher Speck32/6410. 
This work9 is perhaps the first such work that combined 
neural networks with robust conventional cryptanalysis 
techniques and demonstrated a neural network-based attack on 
a symmetric cryptographic primitive and improved upon the 
published state of the art. Gohr’s work was carried forward by 
Baksi et al.11, Jain et al.12, and yadav et al.13. All these works 
clubbed conventional differential cryptanalysis with machine 
learning and achieved better results. Recently, Xiao et al.14 
quantified a cipher’s strength by measuring the difficulty for 
a neural network in mimicking the cipher algorithm. They 
defined several new metrics such as cipher match rate, training 
data complexity, and training time complexity to assess the 
cipher strength quantitatively. This work showed that a popular 
stream cipher Hitag2, used in modern cars’ security, is weaker 
than the 3-round DES cipher. The literature survey indicates 
that the crypto research community has started an extensive 
exploration of deep learning applicability in cryptography in 
recent times.

In this paper, authors proposed a deep learning based 
method. The method is in line with the advantages of deep 
learning techniques as these techniques do not require feature 
extraction or feature selection task, which otherwise can not 
be escaped in any other mathematical, statistical, or analytical 
procedures. It progressively learns the necessary features from 
raw data. The proposed method considers the problem in the 
black-box scenario, as shown in Figure 1. Black-box as a device 
can be interpreted in terms of its inputs and outputs without 
any knowledge of its internal workings. In our experiments, 
the prior assumption is to consider a stream cipher algorithm 
as a black box and deal with the problem as a classification 
problem. The objective is to predict the value at a specific 
location in the output from an available input.  

Following are authors main contributions in this 
paper:
• The findings from this paper show that the deep 

learning based method is more straightforward and 
advantageous compared to existing methods for the 
analysis of stream ciphers.

• The validation of the proposed method through 
extensive analysis of RC4 stream cipher and its 
improved variant RC4A establishes the applicability 
of deep learning methods in cipher data.

• The performance analysis indicates towards the 
generalisation of the method to other stream ciphers.

2. PreLImInArIeS
This section provides a brief description of deep learning 

fundamentals, which are necessary for understanding the 
proposed method. It also contains a design description of RC4 
stream cipher.

2.1 Deep Learning methods
Deep learning is a class of machine learning algorithms3,15 

that successively uses multiple layers of artificial neurons to 
extract higher-level features from the raw input. For example, 
in image processing, initial lower layers identify edges, 
whereas higher layers identify more meaningful features 
such as digits, letters, or faces. Figure 2 shows a general deep 
learning architecture containing an input and output layer with 
multiple intermediate hidden layers.

Due to the vanishing gradient problem in neural networks16 
and computational limitations until a few years back, it was 
not possible (or computationally infeasible) to train multiple-
layered neural networks. But, recent developments in the last 
decade, such as increased processing with GPu (Graphical 
Processing unit) and TPu (Tensor Processing unit) from 
Google and introduction of Rectified Linear unit (ReLu) 
as an activation function in place of the classical sigmoid 
function, made it possible to stack multiple hidden layers in 
the network17. ReLu and Sigmoid activation functions are 

defined as ( ) max(0, )f x x=  and 1( )
1 xg x

e−=
+

 respectively. 

The input layer takes the raw input, and intermediate hidden 

Figure 1. black-box analysis model for proposed method.

Figure 2. General Deep Learning Architecture.
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layers progressively process the input data further by using an 
activation function. After that, the output layer generally uses 
Softmax function for final classification. The Softmax function 
is given below:

0

( ) 0,1,2,...,
i

i

x

i k
x

i

eF X where i k
e

=

= =
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Here k  denotes the number of possible outputs. Stacking 
many intermediate layers between input and output layers 
allows networks to learn an abstract representation of the 
mapping from input data to the corresponding target output. 
Some popular deep learning techniques are Convolution 
Neural Networks (CNN), Recurrent Neural Networks (RNN), 
and Long Short Term Memory networks (LSTM)18.

2.2 brief Description of Stream Ciphers
Symmetric key cryptography comprises of Block ciphers 

and Stream ciphers. In stream ciphers, the keystream of the 
desired length is generated using an initial key (invariably 
known as a secret key). The generated keystream is then 
masked (generally, using exclusive-or) with the plaintext 
bits to provide a ciphertext. In the early era of modern 
cryptography, stream ciphers were widely used due to their 
simplicity and speed than that of block ciphers. Stream ciphers 
have been the preferred choice in applications where extremely 
high throughput is needed or only low complexity hardware 
is available for usage. Keeping in mind the fundamental 
requirement in cryptography, the stream cipher design should 
ensure the desired cryptographic requirement of randomness 
in the output keystream. One of the criteria of fulfilling this is 
to ensure that the occurrence of any value in the range 0 to 255 
at a byte position in stream cipher generated keystream should 
have equal probability. In other words, the occurrence of any 
value (in the given range) should have a probability 1/256. If 
the probability of the occurrence of any value at a byte position 
differs from it significantly, the keystream is adjudged to be 

biased at that specific byte position. The existence of this bias 
makes the stream cipher vulnerable to cryptanalytic attacks.

RC4 is a stream cipher that iteratively generates the 
keystream in a byte-wise form. The generated keystream 
was claimed to possess pseudo-random characteristics. The 
exclusive-or (XOR) of keystream bits with the plaintext bits 
is done for encryption. The decryption is performed on similar 
lines by bit-wise XOR of ciphertext bits with the keystream bits. 
RC4 algorithm is composed of two phases: Key Scheduling 
Algorithm (KSA) and Pseudo Random Generation Algorithm 
(PRGA). The cipher description is given in Algorithm 1, and a 
simple layout of RC4 stream cipher is shown in Figure 3.
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In the algorithmic flow of RC4, ' '+  denotes the 
modaddition ulo N operation. In KSA, N  pairs of the 

array [ ]s  are swapped based on the values of the secret key 
(key). At the end of KSA phase, an initial state is achieved 
for PRGA. After that, the output keystream of the desired 
length is generated in PRGA phase of the algorithm.

Paul and Praneel19 found a weakness in RC4 stream 
cipher, and later on, to improve the security of the cipher, 
they proposed a strengthened RC4 variant, which they named 
RC4A. RC4A stream cipher uses two key components 
instead of using only one to generate two state arrays 1s  
and 2s  by following the Key Scheduling Algorithm (KSA) 
of RC4. Other steps of RC4A pseudo-random generation 
algorithm19 are similar, as performed in RC4. 

As discussed earlier, we carry out the same experiment 
over two more stream ciphers namely Trivium20 and 
TRIAD21. Trivium was designed to explore how much 

Figure 3. A Simple Layout of rC4.
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a stream cipher can be made simple while maintaining the 
desired level of security and also ensuring the speed and 
flexibility. Since then, Trivium has been a well-tested stream 
cipher for its security analysis and till date no cryptanalytic 
attacks superior to brute-force are reported. So, we select this 
cipher to see if our method can learn and predict any bias in 
Trivium generated keystream. On the other hand, TRIAD-SC 
is relatively a new stream cipher based on which a family of 
lightweight symmetric-key schemes are proposed under NIST 
Lightweight Cipher competition23. No significant cryptanalytic 
work has been reported on TRIAD-SC as on date, therefore we 
experiment over this stream cipher to explore any possibility 
of finding the biases in the keystream generated by this cipher. 
Trivium is a synchronous stream cipher designed specifically 
for hardware usage, although it performs reasonably good in 
software implementation as well. Trivium was submitted to 
the eSTREAM competition22 by its designers20 and was later 
selected for profile 2 of the eSTREAM project. Profile 2 was 
targeted for low area hardware ciphers.  Trivium generates 
keystream output of size up to 264 bits from a given key and IV, 
each of 80-bit size. We here avoid more details and the same 
can be had at reference20.

TRAID, a stream cipher based family, consists of an 
authentication encryption mode (TRAID-AE) and a hash 
function (TRIAD-HASH). TRIAD-AE is basically an 
encryption-then-mac construction, in which a stream cipher 
TRIAD-SC is meant for performing encryption module. TRIAD 
was submitted to the lightweight crypto standardisation process 
of NIST23. TRIAD-SC takes 128-bit secret key and a 96-bit 
nonce as input along with one constant value (0xFFFFFFFE) 
and generates the keystream of desired length for encrypting 
the plaintext. We are not providing any further details about the 
algorithm and the same can be found in21.

3. ProPoSeD methoDoLoGy For 
CryPtAnALySIS oF StreAm CIPher
In this section, we propose a method that is primarily based 

on deep learning. We adopt this method for the cryptanalysis of 
stream ciphers with the target of finding biases in the generated 
keystream. The detailed stepwise algorithm is as follows:

0. Let the initial parameters be represented as:
a) Initial Key: K
b) Initial State: S
c) Keystream: KS
(Considering the black-box scenario, the updation of S  

is not known to our method)

1. Let 1 2 *8... nK k k k= ; where n  denotes the length (in 
bytes) of the Initial Key.

2. With K  as input, run stream cipher algorithm to 
generate the keystream KS

3. Iterate Step-1 and Step-2, N times for N different 
values of K  to generate " "K KS− pairs, i.e., “InitialKey − 
Keystream” pairs

4. Create a dataset consisting of these N  pairs
5. Divide dataset into two parts, namely Training dataset 

and Test dataset having 80% and the remaining 20% of above-

mentioned N  pairs respectively
6. Pass the dataset to deep learning network by considering 

Initial Key K  as input and 1st byte of corresponding KS  as 
target

7. Train the network using training dataset to create a deep 
learning model

8. Validate the model on the test dataset and collect the 
result which shows the prediction probability of the model for 
1st byte of KS

9. Repeat the process mentioned in steps from 6 to 8 for 
experimenting with 2nd, 3rd, 4th, . . . bytes of KS

10. ith byte of KS  is biased If Prediction Probability (for 
ith byte of KS ) is significantly more than 1/256 (0.0039), else 
it is random

4. AnALySIS oF StreAm CIPherS uSInG 
ProPoSeD methoDoLoGy
The experimental set-up, as explained in Section 3, is used 

for cryptanalysis of RC4 by taking the following values:
length of Initial Key ( n ) = 5
#Samples/ Pairs ( N ) = 4,00,000
The experiment has been performed for predicting 1st, 2nd, 

3rd, 4th, . . . bytes of RC4 keystream. As explained earlier, RC4 
takes a variable-length Initial Key as input (length typically 
being in the range between 5 and 256 bytes) and iteratively 
generates a pseudorandom Keystream in byte-wise form as 
output. In our experimental setup, initially, we fixed the input 
key size to 5 bytes and generated 4,00,000 input-output pairs. 
The size of State Vector/ Initial State, which gets initialised by 
the initial key and generates keystream by its regular updation, 
is taken to be 256 for our experiments. It is re-emphasised 
that the variable Initial Key is the input, and the jth byte of the 
Keystream denotes the target value in our experimental set-up. 
In other words, for one training/test pair, the Initial Key is the 
input, and jth byte of correspondingly generated Keystream is 
the target value.

Initially, deep learning based prediction model was set-up 
for predicting the first output byte of RC4 keystream. For each 
sample in our supervised deep learning model, five bytes of 
initial key are taken as five neurons in input layer and first byte 
of the keystream is taken as target in output layer. For example, 
if initial key is 0xEB9F72AE1C (in Hex format) and generated 
keystream is 0xBBF316E8D940AF0AD3 . . . (in Hex format), 
then 0xEB, 0x9F, 0x72, 0xAE and 0x1C are five neurons in 
input layer and first byte 0xBB is the target in output layer. In 
total, 4,00,000 such input-output pairs were taken for creating 
the deep learning model. This data set was divided in 80% 
(3,20,000 in numbers) training and 20% (80,000 in numbers) 
test instances for validation of the method. Seven dense layers, 
each with 10 neurons and ReLU activation function, followed 
by an output layer with 256 neurons with Softmax activation 
function have been taken in creating the model. The model is 
compiled with adam optimizer and categorical_crossentropy 
as loss function3. Loss denotes the error between actual target 
and output value predicted by DL network. Adam optimizer, 
an extension to stochastic gradient descent, has found broader 
adoption in recent times after increasing popularity of deep 
learning techniques in diversified domains.   Categorical 
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crossentropy is a loss function used in multi-classs classification 
tasks. Multi-class classification is related to the tasks where a 
given sample can belong only one of many possible categories. 
This actually quantifies the difference between two probability 
distributions. Ours is a supervised learning problem as the 
model is first trained with the help of the samples for which 
the classes are known. The process of backpropagation is used 
for fine tuning the weights for minimizing the loss. Training is 
done in five epochs and after five epochs results are collected 
for training and validation data. Similar prediction models were 
also created for predicting each of the first ten output bytes of 
RC4 keystream. The deep learning arrangement employed in 
our work is shown in Figure 4.

The similar arrangement of experiment has been used 
for cryptanalysis of RC4A stream cipher except the following 
parameter: 

length of Initial Key ( n ) = 10
The length of initial key in case of RC4A is taken large 

in comparison to that for RC4 as the initial key for the former 
stream cipher is a combination of two key components. The 
rest of experimental set-up and the amount of data are exactly 
same in both cases.

For experimenting with two other stream ciphers, Trivium 
and TRAID-SC, we generated 217 keystream samples for 
different respective inputs for each cipher. The objective was 
to compute the prediction accuracy for each of the first 256 
bits of the keystream. We also performed the experiments for 
predicting the first 32 bytes of the keystream. 

5. exPerImentAL reSuLtS AnD 
ComPArAtIve AnALySIS
The implementation of the code for the proposed method 

has been done on Google Colab24. Colaboratory (Colab in 
short) is a free cloud service provided by Google in Jupyter 
notebook environment where availability of GPus and TPus 
may be used for the development of codes for problem-solving. 
It allows developing deep learning algorithms using popular 
libraries such as PyTorch, TensorFlow, and Keras25.

The broad objective of the experiment is to create deep 
learning model to predict the output bytes of RC4 keystream 
when the initial key is known to us. For validating the proposed 
method, we construct ten different deep learning models, one 
each for the first 10 bytes of the keystream. Table 1 shows the 
results of our experiments. We used 4,00,000 samples (input-
output pairs) for constructing each deep learning model for the 
prediction of output bytes as the prediction rates were stable 
with this sample size. For this amount of samples, average 
execution time of the code/model over GPu runtime in Google 
Colab was observed to be 16 seconds. We also carried out 
the experiments with fewer samples and observed that the 
model was continually providing reasonable prediction rates 
even with 30,000 samples. But below this number, the results 
(prediction rates) were not consistent.

Theoretically, if a well-designed stream cipher generates 
a random keystream, then it may safely be assumed that the 
occurrence of a specific value at any output byte position in 

Figure 4. Deep Learning arrangement used in the experiment.

table 1.  Prediction Probability for different output byte 
positions in rC4 Keystream for input secret keys of 
size 5 bytes

byte Position 
in rC4 
Keystream

training Accuracy 
(Prediction Probability 
for training Data)

testing Accuracy 
(Prediction Probability 
for test Data)

1 0.0040 0.0040

2 0.0079 0.0073

3 0.0040 0.0040

4 0.0041 0.0040

5 0.0040 0.0039

6 0.0040 0.0042

7 0.0040 0.0039

8 0.0039 0.0042

9 0.0040 0.0040

10 0.0040 0.0040
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the keystream could not be predicted with better than chance 
probability (chance probability means the occurrence of 
each possible output should be equiprobable, like chances of 
occurrence of either head or tail in tossing a coin should be 
with equal probability i.e., 0.5).

Similarly, in our case, had RC4 stream cipher generated 
a random keystream, no method would have predicted the 
occurrence of a specific value at any output byte position 
of keystream with significantly better than 1/256 = 0.0039 
probability (as a byte may take any value from 0 to 255). Our 
experimentation results show that the deep learning model has 
been able to predict the second output byte with a significantly 
good probability (i.e., 1/128 = 0.0073). In contrast, it could 
not learn to predict the occurrence of other output bytes with 
better than chance probability. For other output bytes of 
RC4 keystream, the prediction probability is approximately 
1/256=0.0039. In other words, our model could learn the 
process of mapping the input initial key to the second byte of 
the keystream with a biased probability. This finding exposes 
the presence of bias at second byte position in RC4 keystream, 
which can enable the adversaries in mounting a practical 
ciphertext-only attack in some applications. We carried out 
similar experiments for four other different input initial key 
sizes of 8, 16, 24, and 32 bytes. In all the experiments, we 
obtained similar findings that that the model could learn the 
biased behavior at 2nd output byte of RC4 keystream with the 
probability around 1/128. For other output bytes, the prediction 
probability was approximately 1/256, which is the desired 
randomness for output byte of RC4 keystream. The overall 
results for our experiment with RC4 stream cipher are shown 
in Table 2.

The experiments on similar lines were also carried out for 
RC4A stream cipher. The experimental results for the same are 
presented in Table 3. The results clearly validate the designers 
claim that they have successfully eliminated the bias at second 
output byte in their improved variant of RC4 stream cipher 

(i.e. RC4A). In case of stream ciphers Trivium and TRIAD, 
the achieved accuracy was almost equal to chance probability. 
As nothing significant was observed for two ciphers, we omit 
showing the results here.

Mantin and Shamir26 performed a comprehensive 
statistical analysis of RC4 keystream. Their result shows that 
the probability of the second output keystream byte of RC4 
being zero is approximately double than expected if the initial 
permutation is randomly chosen. Paul and Praneel19, after 
doing rigorous analysis, presented a new statistical bias in the 
distribution of the first two output bytes of RC4 keystream 
generator. Pudovkina27 analytically attempted to detect a bias 
in the distribution of first and second output values of RC4 
keystream considering certain uniformity assumptions. The 
methods used by these researchers and us along with respective 
observations are shown in Table 4. Several other researchers 
through statistical and mathematical means and experiments 
tried to find biases in RC4 and other stream ciphers by making 

Table 2. Prediction Probability for outputs bytes in RC4 Keystream for different input key sizes

Key Size 
in bytes

Prediction Probability for Different Output Bytes of RC4 Keystream
1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte 9th byte 10th byte

5 0.0040 0.0079 0.0040 0.0041 0.0040 0.0040 0.0040 0.0039 0.0040 0.0040

8 0.0039 0.0079 0.0041 0.0037 0.0046 0.0038 0.0041 0.0035 0.0038 0.0042

16 0.0040 0.0077 0.0039 0.0042 0.0033 0.0042 0.0042 0.0038 0.0036 0.0042

24 0.0041 0.0075 0.0042 0.0041 0.0040 0.0042 0.0036 0.0044 0.0035 0.0041

32 0.0043 0.0075 0.0038 0.0038 0.0038 0.0038 0.0037 0.0039 0.0038 0.0036

Table 4. Comparative Analysis of different methods for finding weakness of RC4 in terms of approach and observations

type observation Source

Statistical analysis The probability of second output word of RC4 being 0 is approximately double than the expected 
probability. Other output words have uniform distribution Ref.26

Statistical analysis The first two output words of RC4 are equal with probability that is significantly less than the 
expected probability Ref.19

exhaustive probabilistic model The distribution of first, second output values of RC4 and digraphs are not uniform Ref.27

Deep learning method The prediction probability of second output word of RC4 is almost double than the expected 
probability. Other output words have prediction probability as expected in uniform distribution

This 
work

table 3. Prediction Probability for different output byte 
positions in rC4A Keystream for input secret keys 
of size 5 bytes

byte Position 
in rC4A 
Keystream

training Accuracy 
(Prediction Probability 
for training Data)

testing Accuracy 
(Prediction Probability 
for test Data)

1 0.0040 0.0042
2 0.0044 0.0037
3 0.0041 0.0046
4 0.0042 0.0040
5 0.0048 0.0033
6 0.0049 0.0046
7 0.0041 0.0036
8 0.0044 0.0044
9 0.0039 0.0037
10 0.0044 0.0041
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certain assumptions. Thus, the most of the findings have been 
based on manual calculation of the probability distribution in 
keystream data, which required much in-depth analysis of the 
cipher structure. On the other side, our proposed method does 
not require prior assumptions and any complex mathematical 
or statistical analysis for finding the bias. It simply needs input-
output pairs of the stream cipher algorithm and passes them 
to the deep learning framework. Therefore, it can evidently 
be concluded that the proposed deep learning based method 
provides a straightforward approach for cryptanalysis of stream 
ciphers in terms of finding the biases.

6. ConCLuSIon
The foremost application of the proposed work is to 

perceive distinguishability in different stream ciphers, which 
simply ensures mounting of distinguishing attack on stream 
ciphers. In other words, the distinguishing attack means if 
certain number of black boxes generate the pseudo-random 
keystreams from a known input key, then the black box behaving 
as a specific stream cipher can be identified amongst all. Thus, 
a deep learning based method has successfully been applied in 
finding the bias and further exploration of distinguishability in 
stream ciphers. The proposed method has been validated on 
RC4 stream cipher to ascertain its simplicity in comparison 
to earlier sophisticated mathematical and statistical methods. 
The observations and analysis throughout the paper clearly 
indicate that the emergence of new deep learning techniques 
will always go hand in hand with cryptographic analysis. 
The prediction accuracy can be impacted by many factors, 
including the network design, the training data volume, and 
the training time.  We also carried out the experiments over 
three other stream ciphers RC4A, Trivium and TRIAD, but did 
not observe anything significant. In future, more experiments 
will be performed to gain better insights into the experimental 
setting. The aim will also be to analyze several other stream 
ciphers and explore better representation of cryptographic 
data which may become more relevant to deep learning 
framework.
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