8,166 research outputs found

    Collective Edge Modes near the onset of a graphene quantum spin Hall state

    Get PDF
    Graphene subject to a strong, tilted magnetic field exhibits an insulator-metal transition tunable by tilt-angle, attributed to the transition from a canted antiferromagnetic (CAF) to a ferromagnetic (FM) bulk state at filling factor zero. We develop a theoretical description for the spin and valley edge textures in the two phases, and the implied evolution in the nature of edge modes through the transition. In particular, we show that the CAF has gapless neutral modes in the bulk, but supports gapped charged edge modes. At the transition to the FM state the charged edge modes become gapless and are smoothly connected to the helical edge modes of the FM state. Possible experimental consequences are discussed.Comment: 5 pages, 2 figure

    Collective Bulk and Edge Modes through the Quantum Phase Transition in Graphene at ν=0\nu=0

    Get PDF
    Undoped graphene in a strong, tilted magnetic field exhibits a radical change in conduction upon changing the tilt-angle, which can be attributed to a quantum phase transition from a canted antiferromagnetic (CAF) to a ferromagnetic (FM) bulk state at filling factor ν=0\nu=0. This behavior signifies a change in the nature of the collective ground state and excitations across the transition. Using the time-dependent Hartree-Fock approximation, we study the collective neutral (particle-hole) excitations in the two phases, both in the bulk and on the edge of the system. The CAF has gapless neutral modes in the bulk, whereas the FM state supports only gapped modes in its bulk. At the edge, however, only the FM state supports gapless charge-carrying states. Linear response functions are computed to elucidate their sensitivity to the various modes. The response functions demonstrate that the two phases can be distinguished by the evolution of a local charge pulse at the edge.Comment: 15 pages, 23 figure

    Emergence of helical edge conduction in graphene at the \nu=0 quantum Hall state

    Get PDF
    The conductance of graphene subject to a strong, tilted magnetic field exhibits a dramatic change from insulating to conducting behavior with tilt-angle, regarded as evidence for the transition from a canted antiferromagnetic (CAF) to a ferromagnetic (FM) \nu=0 quantum Hall state. We develop a theory for the electric transport in this system based on the spin-charge connection, whereby the evolution in the nature of collective spin excitations is reflected in the charge-carrying modes. To this end, we derive an effective field theoretical description of the low-energy excitations, associated with quantum fluctuations of the spin-valley domain wall ground-state configuration which characterizes the two-dimensional (2D) system with an edge. This analysis yields a model describing a one-dimensional charged edge mode coupled to charge-neutral spin-wave excitations in the 2D bulk. Focusing particularly on the FM phase, naively expected to exhibit perfect conductance, we study a mechanism whereby the coupling to these bulk excitations assists in generating back-scattering. Our theory yields the conductance as a function of temperature and the Zeeman energy - the parameter that tunes the transition between the FM and CAF phases - with behavior in qualitative agreement with experiment.Comment: 16 pages, 1 figur

    Design of optimized three-dimensional thrust nozzle contours

    Get PDF
    Design of optimized three-dimensional thrust nozzle contour

    METCAN updates for high temperature composite behavior: Simulation/verification

    Get PDF
    The continued verification (comparisons with experimental data) of the METCAN (Metal Matrix Composite Analyzer) computer code is updated. Verification includes comparisons at room and high temperatures for two composites, SiC/Ti-15-3 and SiC/Ti-6-4. Specifically, verification of the SiC/Ti-15-3 composite includes comparisons of strength, modulus, and Poisson's ratio as well as stress-strain curves for four laminates at room temperature. High temperature verification includes comparisons of strength and stress-strain curves for two laminates. Verification of SiC/Ti-6-4 is for a transverse room temperature stress-strain curve and comparisons for transverse strength at three temperatures. Results of the verification indicates that METCAN can be used with confidence to simulate the high temperature nonlinear behavior of metal matrix composites

    Spin-excitations of the quantum Hall ferromagnet of composite fermions

    Get PDF
    The spin-excitations of a fractional quantum Hall system are evaluated within a bosonization approach. In a first step, we generalize Murthy and Shankar's Hamiltonian theory of the fractional quantum Hall effect to the case of composite fermions with an extra discrete degree of freedom. Here, we mainly investigate the spin degrees of freedom, but the proposed formalism may be useful also in the study of bilayer quantum-Hall systems, where the layer index may formally be treated as an isospin. In a second step, we apply a bosonization scheme, recently developed for the study of the two-dimensional electron gas, to the interacting composite-fermion Hamiltonian. The dispersion of the bosons, which represent quasiparticle-quasihole excitations, is analytically evaluated for fractional quantum Hall systems at \nu = 1/3 and \nu = 1/5. The finite width of the two-dimensional electron gas is also taken into account explicitly. In addition, we consider the interacting bosonic model and calculate the lowest-energy state for two bosons. Besides a continuum describing scattering states, we find a bound-state of two bosons. This state is interpreted as a pair excitation, which consists of a skyrmion of composite fermions and an antiskyrmion of composite fermions. The dispersion relation of the two-boson state is evaluated for \nu = 1/3 and \nu = 1/5. Finally, we show that our theory provides the microscopic basis for a phenomenological non-linear sigma-model for studying the skyrmion of composite fermions.Comment: Revised version, 14 pages, 4 figures, accepted to Phys. Rev.
    • …
    corecore