51 research outputs found

    Nanotechnology based therapeutic approaches to iron‐induced oxidative stress in an in vitro model of Parkinson’s disease

    Get PDF
    In Parkinson’s disease (PD), excess free iron drives the accumulation of toxic hydroxyl radicals within mitochondria of dopaminergic neurons, resulting in sustained oxidative stress and cellular damage. The blood‐brain barrier (BBB) prevents most pharmaceuticals from entering the brain, therefore, to enable the advancement of potential antioxidant and iron chelator therapies for PD, limiting factors such as brain penetrance and bioavailability need to be overcome. This study aimed to develop novel nanocarrier delivery systems of the antioxidants curcumin, n‐acetylcysteine (NAC) and hydroxytyrosol (HT), alone or combined with the iron chelator deferoxamine (DFO), to protect against rotenone‐induced parkinsonism in SH‐SY5Y cells, and in a co‐cultured hCMEC/D3 ‐ SH‐SY5Y cellular BBB model. In Parkinson’s disease (PD), excess free iron drives the accumulation of toxic hydroxyl radicals within mitochondria of dopaminergic neurons, resulting in sustained oxidative stress and cellular damage. The blood‐brain barrier (BBB) prevents most pharmaceuticals from entering the brain, therefore, to enable the advancement of potential antioxidant and iron chelator therapies for PD, limiting factors such as brain penetrance and bioavailability need to be overcome. This study aimed to develop novel nanocarrier delivery systems of the antioxidants curcumin, n‐acetylcysteine (NAC) and hydroxytyrosol (HT), alone or combined with the iron chelator deferoxamine (DFO), to protect against rotenone‐induced parkinsonism in SH‐SY5Y cells, and in a co‐cultured hCMEC/D3 ‐ SH‐SY5Y cellular BBB model

    Deferoxamine and Curcumin Loaded Nanocarriers Protect Against Rotenone-Induced Neurotoxicity

    Get PDF
    Background: Reduced glutathione and excess free iron within dopaminergic, substantia nigra neurons in Parkinson's disease (PD) can drive accumulation of toxic hydroxyl radicals resulting in sustained oxidative stress and cellular damage. Factors such as brain penetrance and bioavailability have limited the advancement of potential antioxidant and iron chelator therapies for PD. Objective: This study aimed to develop novel nanocarrier delivery systems for the antioxidant curcumin and/or iron chelator deferoxamine (DFO) to protect against rotenone-induced changes in cell viability and oxidative stress in SH-SY5Y cells. Methods: Nanocarriers of curcumin and/or DFO were prepared using Pluronic F68 (P68) with or without dequilinium (DQA) by modified thin-film hydration. Cell viability was assessed using an MTT assay and oxidative stress was measured using thiobarbituric acid reactive substances and cellular antioxidant activity assays. Results: All formulations demonstrated high encapsulation efficiency (65-96%) and nanocarrier size was <200 nm. 3-h pretreatment with P68 or P68+DQA nanocarriers containing various concentrations of curcumin and/or DFO significantly protected against rotenone-reduced cell viability. The addition of DFO to curcumin-loaded P68+DQA nanocarriers resulted in increased protection by at least 10%. All nanoformulations significantly protected against rotenone-induced lipid peroxidation (p < 0.0001). The addition of DQA, which targets mitochondria, resulted in up to 65% increase in cellular antioxidant activity. In nearly all preparations, the combination of 10 ÎŒM curcumin and 100 ÎŒM DFO had the most antioxidant activity. Conclusion: This study demonstrates for the first time the formulation and delivery using P68 and P68+DQA curcumin and/or DFO nanocarriers to protect against oxidative stress induced by a rotenone PD model. This strategy to combine antioxidants with iron chelators may provide a novel approach to fully utilise their therapeutic benefit for PD

    Micellar Nanocarriers of Hydroxytyrosol Are Protective against Parkinson’s Related Oxidative Stress in an In Vitro hCMEC/D3-SH-SY5Y Co-Culture System

    Get PDF
    Hydroxytyrosol (HT) is a natural phenolic antioxidant which has neuroprotective effects in models of Parkinson’s disease (PD). Due to issues such as rapid metabolism, HT is unlikely to reach the brain at therapeutic concentrations required for a clinical effect. We have previously developed micellar nanocarriers from Pluronic F68¼ (P68) and dequalinium (DQA) which have suitable characteristics for brain delivery of antioxidants and iron chelators. The aim of this study was to utilise the P68 + DQA nanocarriers for HT alone, or in combination with the iron chelator deferoxamine (DFO), and assess their physical characteristics and ability to pass the blood–brain barrier and protect against rotenone in a cellular hCMEC/D3-SH-SY5Y co-culture system. Both HT and HT + DFO formulations were less than 170 nm in size and demonstrated high encapsulation efficiencies (up to 97%). P68 + DQA nanoformulation enhanced the mean blood–brain barrier (BBB) passage of HT by 50% (p 0.0001, n = 6). This resulted in increased protection against rotenone induced cytotoxicity and oxidative stress by up to 12% and 9%, respectively, compared to the corresponding free drug treatments (p 0.01, n = 6). This study demonstrates for the first time the incorporation of HT and HT + DFO into P68 + DQA nanocarriers and successful delivery of these nanocarriers across a BBB model to protect against PD-related oxidative stress. These nanocarriers warrant further investigation to evaluate whether this enhanced neuroprotection is exhibited in in vivo PD models

    Curcumin and N-Acetylcysteine Nanocarriers Alone or Combined with Deferoxamine Target the Mitochondria and Protect against Neurotoxicity and Oxidative Stress in a Co-Culture Model of Parkinson’s Disease

    Get PDF
    As the blood-brain barrier (BBB) prevents most compounds from entering the brain, nanocarrier delivery systems are frequently being explored to potentially enhance the passage of drugs due to their nanometer sizes and functional characteristics. This study aims to investigate whether Pluronic¼ F68 (P68) and dequalinium (DQA) nanocarriers can improve the ability of curcumin, n-acetylcysteine (NAC) and/or deferoxamine (DFO), to access the brain, specifically target mitochondria and protect against rotenone by evaluating their effects in a combined Transwell¼ hCMEC/D3 BBB and SH-SY5Y based cellular Parkinson’s disease (PD) model. P68 + DQA nanoformulations enhanced the mean passage across the BBB model of curcumin, NAC and DFO by 49%, 28% and 49%, respectively (p < 0.01, n = 6). Live cell mitochondrial staining analysis showed consistent co-location of the nanocarriers within the mitochondria. P68 + DQA nanocarriers also increased the ability of curcumin and NAC, alone or combined with DFO, to protect against rotenone induced cytotoxicity and oxidative stress by up to 19% and 14% (p < 0.01, n = 6), as measured by the MTT and mitochondrial hydroxyl radical assays respectively. These results indicate that the P68 + DQA nanocarriers were successful at enhancing the protective effects of curcumin, NAC and/or DFO by increasing the brain penetrance and targeted delivery of the associated bioactives to the mitochondria in this model. This study thus emphasises the potential effectiveness of this nanocarrier strategy in fully utilising the therapeutic benefit of these antioxidants and lays the foundation for further studies in more advanced models of PD

    Micellar nanocarriers of hydroxytyrosol are protective against parkinson’s related oxidative stress in an in vitro hcmec/d3‐sh‐sy5y co‐culture system

    Get PDF
    Hydroxytyrosol (HT) is a natural phenolic antioxidant which has neuroprotective effects in models of Parkinson’s disease (PD). Due to issues such as rapid metabolism, HT is unlikely to reach the brain at therapeutic concentrations required for a clinical effect. We have previously developed micellar nanocarriers from Pluronic F68¼ (P68) and dequalinium (DQA) which have suita-ble characteristics for brain delivery of antioxidants and iron chelators. The aim of this study was to utilise the P68 + DQA nanocarriers for HT alone, or in combination with the iron chelator deferox-amine (DFO), and assess their physical characteristics and ability to pass the blood–brain barrier and protect against rotenone in a cellular hCMEC/D3‐SH‐SY5Y co‐culture system. Both HT and HT + DFO formulations were less than 170 nm in size and demonstrated high encapsulation efficiencies (up to 97%). P68 + DQA nanoformulation enhanced the mean blood–brain barrier (BBB) passage of HT by 50% (p < 0.0001, n = 6). This resulted in increased protection against rotenone induced cyto-toxicity and oxidative stress by up to 12% and 9%, respectively, compared to the corresponding free drug treatments (p < 0.01, n = 6). This study demonstrates for the first time the incorporation of HT and HT + DFO into P68 + DQA nanocarriers and successful delivery of these nanocarriers across a BBB model to protect against PD‐related oxidative stress. These nanocarriers warrant further investigation to evaluate whether this enhanced neuroprotection is exhibited in in vivo PD models

    Co-Administration of Iron and a Bioavailable Curcumin Supplement Increases Serum BDNF Levels in Healthy Adults

    Get PDF
    Brain-derived neurotrophic factor (BDNF) is key for the maintenance of normal neuronal function and energy homeostasis and has been suggested to improve cognitive function, including learning and memory. Iron and the antioxidant curcumin have been shown to influence BDNF homeostasis. This 6-week, double blind, randomized, placebo-controlled study examined the effects of oral iron supplementation at low (18 mg) and high (65 mg) ferrous (FS) iron dosages, compared to a combination of these iron doses with a bioavailable formulated form of curcumin (HydroCurcTM; 500 mg) on BDNF levels in a healthy adult cohort of 155 male (26.42 years ± 0.55) and female (25.82 years ± 0.54) participants. Participants were randomly allocated to five different treatment groups: both iron and curcumin placebo (FS0+Plac), low dose iron and curcumin placebo (FS18+Plac), low dose iron and curcumin (FS18+Curc), high dose iron and curcumin placebo (FS65+Plac) and high dose iron and curcumin (FS65+Curc). Results showed a significant increase in BDNF over time (26%) in the FS18+Curc group (p = 0.024), and at end-point between FS18+Curc and FS18+Plac groups (35%, p = 0.042), demonstrating for the first time that the combination with curcumin, rather than iron supplementation alone, results in increased serum BDNF. The addition of curcumin to iron supplementation may therefore provide a novel approach to further enhance the benefits associated with increased BDNF levels

    N-Acetylcysteine Nanocarriers Protect against Oxidative Stress in a Cellular Model of Parkinson's Disease

    Get PDF
    Oxidative stress is a key mediator in the development and progression of Parkinson’s disease (PD). The antioxidant N-acetylcysteine (NAC) has generated interest as a disease-modifying therapy for PD but is limited due to poor bioavailability, a short half-life, and limited access to the brain. The aim of this study was to formulate and utilise mitochondria-targeted nanocarriers for delivery of NAC alone and in combination with the iron chelator deferoxamine (DFO), and assess their ability to protect against oxidative stress in a cellular rotenone PD model. Pluronic F68 (P68) and dequalinium (DQA) nanocarriers were prepared by a modified thin-film hydration method. An MTT assay assessed cell viability and iron status was measured using a ferrozine assay and ferritin immunoassay. For oxidative stress, a modified cellular antioxidant activity assay and the thiobarbituric acid-reactive substances assay and mitochondrial hydroxyl assay were utilised. Overall, this study demonstrates, for the first time, successful formulation of NAC and NAC + DFO into P68 + DQA nanocarriers for neuronal delivery. The results indicate that NAC and NAC + DFO nanocarriers have the potential characteristics to access the brain and that 1000 ÎŒM P68 + DQA NAC exhibited the strongest ability to protect against reduced cell viability (p = 0.0001), increased iron (p = 0.0033) and oxidative stress (p ≀ 0.0003). These NAC nanocarriers therefore demonstrate significant potential to be transitioned for further preclinical testing for PD
    • 

    corecore