32,460 research outputs found

    Applicability of fluidic controls to a Rankine cycle automotive engine Final report

    Get PDF
    Fluidic controls for automotive engine examined by Rankine cycle performance with water, CP-34, and freon TF and investigation for boiler and feed pump control criteri

    Dynamic phase transition in the conversion of B-DNA to Z-DNA

    Full text link
    The long time dynamics of the conformational transition from B-DNA to Z-DNA is shown to undergo a dynamic phase transition. We obtained the dynamic phase diagram for the stability of the front separating B and Z. The instability in this front results in two split fronts moving with different velocities. Hence, depending on the system parameters a denatured state may develop dynamically eventhough it is thermodynamically forbidden. This resolves the current controversies on the transition mechanism of the B-DNA to Z-DNA.Comment: 5 pages, 4 figures. New version with correction of typos, new references, minor modifications in Fig 2, 3. To appear in EP

    Limit cycles in the presence of convection, a travelling wave analysis

    Full text link
    We consider a diffusion model with limit cycle reaction functions, in the presence of convection. We select a set of functions derived from a realistic reaction model: the Schnakenberg equations. This resultant form is unsymmetrical. We find a transformation which maps the irregular equations into model form. Next we transform the dependent variables into polar form. From here, a travelling wave analysis is performed on the radial variable. Results are complex, but we make some simple estimates. We carry out numerical experiments to test our analysis. An initial `knock' starts the propagation of pattern. The speed of the travelling wave is not quite as expected. We investigate further. The system demonstrates distinctly different behaviour to the left and the right. We explain how this phenomenon occurs by examining the underlying behaviour.Comment: 20 pages, 5 figure

    Field Theory of Propagating Reaction-Diffusion Fronts

    Full text link
    The problem of velocity selection of reaction-diffusion fronts has been widely investigated. While the mean field limit results are well known theoretically, there is a lack of analytic progress in those cases in which fluctuations are to be taken into account. Here, we construct an analytic theory connecting the first principles of the reaction-diffusion process to an effective equation of motion via field-theoretic arguments, and we arrive at the results already confirmed by numerical simulations

    Horseshoe-based Bayesian nonparametric estimation of effective population size trajectories

    Full text link
    Phylodynamics is an area of population genetics that uses genetic sequence data to estimate past population dynamics. Modern state-of-the-art Bayesian nonparametric methods for recovering population size trajectories of unknown form use either change-point models or Gaussian process priors. Change-point models suffer from computational issues when the number of change-points is unknown and needs to be estimated. Gaussian process-based methods lack local adaptivity and cannot accurately recover trajectories that exhibit features such as abrupt changes in trend or varying levels of smoothness. We propose a novel, locally-adaptive approach to Bayesian nonparametric phylodynamic inference that has the flexibility to accommodate a large class of functional behaviors. Local adaptivity results from modeling the log-transformed effective population size a priori as a horseshoe Markov random field, a recently proposed statistical model that blends together the best properties of the change-point and Gaussian process modeling paradigms. We use simulated data to assess model performance, and find that our proposed method results in reduced bias and increased precision when compared to contemporary methods. We also use our models to reconstruct past changes in genetic diversity of human hepatitis C virus in Egypt and to estimate population size changes of ancient and modern steppe bison. These analyses show that our new method captures features of the population size trajectories that were missed by the state-of-the-art methods.Comment: 36 pages, including supplementary informatio

    Hopping Conduction and Bacteria: Transport in Disordered Reaction-Diffusion Systems

    Full text link
    We report some basic results regarding transport in disordered reaction-diffusion systems with birth (A->2A), death (A->0), and binary competition (2A->A) processes. We consider a model in which the growth process is only allowed to take place in certain areas--"oases"--while the rest of space--the "desert"--is hostile to growth. In the limit of low oasis density, transport is mediated through rare "hopping" events, necessitating the inclusion of discreteness effects in the model. By first considering transport between two oases, we are able to derive an approximate expression for the average time taken for a population to traverse a disordered medium.Comment: 4 pages, 2 figure

    Kaon Photoproduction and the Λ\Lambda Decay Parameter α−\alpha_-

    Get PDF
    The weak decay parameter α−\alpha_- of the Λ\Lambda is an important quantity for the extraction of polarization observables in various experiments. Moreover, in combination with α+\alpha_+ from Λˉ\bar\Lambda decay it provides a measure for matter-antimatter asymmetry. The weak decay parameter also affects the decay parameters of the Ξ\Xi and Ω\Omega baryons and, in general, any quantity in which the polarization of the Λ\Lambda is relevant. The recently reported value by the BESIII collaboration of 0.750(9)(4)0.750(9)(4) is significantly larger than the previous PDG value of 0.642(13)0.642(13) that had been accepted and used for over 40 years. In this work we make an independent estimate of α−\alpha_-, using an extensive set of polarization data measured in kaon photoproduction in the baryon resonance region and constraints set by spin algebra. The obtained value is 0.721(6)(5). The result is corroborated by multiple statistical tests as well as a modern phenomenological model, showing that our new value yields the best description of the data in question. Our analysis supports the new BESIII finding that α−\alpha_- is significantly larger than the previous PDG value. Any experimental quantity relying on the value of α−\alpha_- should therefore be re-considered.Comment: 6 pages, 1 figure

    Multiple Components in Narrow Planetary Rings

    Full text link
    The phase-space volume of regions of regular or trapped motion, for bounded or scattering systems with two degrees of freedom respectively, displays universal properties. In particular, drastic reductions in the volume (gaps) are observed at specific values of a control parameter. Using the stability resonances we show that they, and not the mean-motion resonances, account for the position of these gaps. For more degrees of freedom, exciting these resonances divides the regions of trapped motion. For planetary rings, we demonstrate that this mechanism yields rings with multiple components.Comment: 4 pages, 7 figures (some in colors
    • …
    corecore