Phylodynamics is an area of population genetics that uses genetic sequence
data to estimate past population dynamics. Modern state-of-the-art Bayesian
nonparametric methods for recovering population size trajectories of unknown
form use either change-point models or Gaussian process priors. Change-point
models suffer from computational issues when the number of change-points is
unknown and needs to be estimated. Gaussian process-based methods lack local
adaptivity and cannot accurately recover trajectories that exhibit features
such as abrupt changes in trend or varying levels of smoothness. We propose a
novel, locally-adaptive approach to Bayesian nonparametric phylodynamic
inference that has the flexibility to accommodate a large class of functional
behaviors. Local adaptivity results from modeling the log-transformed effective
population size a priori as a horseshoe Markov random field, a recently
proposed statistical model that blends together the best properties of the
change-point and Gaussian process modeling paradigms. We use simulated data to
assess model performance, and find that our proposed method results in reduced
bias and increased precision when compared to contemporary methods. We also use
our models to reconstruct past changes in genetic diversity of human hepatitis
C virus in Egypt and to estimate population size changes of ancient and modern
steppe bison. These analyses show that our new method captures features of the
population size trajectories that were missed by the state-of-the-art methods.Comment: 36 pages, including supplementary informatio