1,470 research outputs found

    VAP, a Versatile Access Point for the Endoplasmic Reticulum: Review and analysis of FFAT-like motifs in the VAPome.

    Get PDF
    Dysfunction of VAMP-associated protein (VAP) is associated with neurodegeneration, both Amyotrophic Lateral Sclerosis and Parkinson's disease. Here we summarize what is known about the intracellular interactions of VAP in humans and model organisms. VAP is a simple, small and highly conserved protein on the cytoplasmic face of the endoplasmic reticulum (ER). It is the sole protein on that large organelle that acts as a receptor for cytoplasmic proteins. This may explain the extremely wide range of interacting partners of VAP, with components of many cellular pathways binding it to access the ER. Many proteins that bind VAP also target other intracellular membranes, so VAP is a component of multiple molecular bridges at membrane contact sites between the ER and other organelles. So far approximately 100 proteins have been identified in the VAP interactome (VAPome), of which a small minority have a "two phenylalanines in an acidic tract" (FFAT) motif as it was originally defined. We have analyzed the entire VAPome in humans and yeast using a simple algorithm that identifies many more FFAT-like motifs. We show that approximately 50% of the VAPome binds directly or indirectly via the VAP-FFAT interaction. We also review evidence on pathogenesis in genetic disorders of VAP, which appear to arise from reduced overall VAP levels, leading to ER stress. It is not possible to identify one single interaction that underlies disease. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim Levine and Anant K. Menon

    Using HHsearch to tackle proteins of unknown function: A pilot study with PH domains

    Get PDF
    Advances in membrane cell biology are hampered by the relatively high proportion of proteins with no known function. Such proteins are largely or entirely devoid of structurally significant domain annotations. Structural bioinformaticians have developed profile-profile tools such as HHsearch (online version called HHpred), which can detect remote homologies that are missed by tools used to annotate databases. Here we have applied HHsearch to study a single structural fold in a single model organism as proof of principle. In the entire clan of protein domains sharing the pleckstrin homology domain fold in yeast, systematic application of HHsearch accurately identified known PH-like domains. It also predicted 16 new domains in 13 yeast proteins many of which are implicated in intracellular traffic. One of these was Vps13p, where we confirmed the functional importance of the predicted PH-like domain. Even though such predictions require considerable work to be corroborated, they are useful first steps. HHsearch should be applied more widely, particularly across entire proteomes of model organisms, to significantly improve database annotations

    Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    Full text link
    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are needed in order to resolve systematic effects in the study. The coefficients of sensitivity to alpha-variation (q) are also presented.Comment: Includes updated version of the "alpha line" lis

    Microabrasion in tooth enamel discoloration defects: three cases with long-term follow-ups

    Get PDF
    Superficial irregularities and certain intrinsic stains on the dental enamel surfaces can be resolved by enamel microabrasion, however, treatment for such defects need to be confined to the outermost regions of the enamel surface. Dental bleaching and resin-based composite repair are also often useful for certain situations for tooth color corrections. This article presented and discussed the indications and limitations of enamel microabrasion treatment. Three case reports treated by enamel microabrasion were also presented after 11, 20 and 23 years of follow-ups

    Minimally Invasive Mitral Valve Surgery I: Patient Selection, Evaluation, and Planning.

    Get PDF
    Widespread adoption of minimally invasive mitral valve repair and replacement may be fostered by practice consensus and standardization. This expert opinion, first of a 3-part series, outlines current best practices in patient evaluation and selection for minimally invasive mitral valve procedures, and discusses preoperative planning for cannulation and myocardial protection

    Minimally Invasive Mitral Valve Surgery III: Training and Robotic-Assisted Approaches.

    Get PDF
    Minimally invasive mitral valve operations are increasingly common in the United States, but robotic-assisted approaches have not been widely adopted for a variety of reasons. This expert opinion reviews the state of the art and defines best practices, training, and techniques for developing a successful robotics program

    Minimally Invasive Mitral Valve Surgery II: Surgical Technique and Postoperative Management.

    Get PDF
    Techniques for minimally invasive mitral valve repair and replacement continue to evolve. This expert opinion, the second of a 3-part series, outlines current best practices for nonrobotic, minimally invasive mitral valve procedures, and for postoperative care after minimally invasive mitral valve surgery

    The role of predicted chemotactic and hydrocarbon degrading taxa in natural source zone depletion at a legacy petroleum hydrocarbon site

    Get PDF
    Petroleum hydrocarbon contamination is a global problem which can cause long-term environmental damage and impacts water security. Natural source zone depletion (NSZD) is the natural degradation of such contaminants. Chemotaxis is an aspect of NSZD which is not fully understood, but one that grants microorganisms the ability to alter their motion in response to a chemical concentration gradient potentially enhancing petroleum NSZD mass removal rates. This study investigates the distribution of potentially chemotactic and hydrocarbon degrading microbes (CD) across the water table of a legacy petroleum hydrocarbon site near Perth, Western Australia in areas impacted by crude oil, diesel and jet fuel. Core samples were recovered and analysed for hydrocarbon contamination using gas chromatography. Predictive metagenomic profiling was undertaken to infer functionality using a combination of 16 S rRNA sequencing and PICRUSt2 analysis. Naphthalene contamination was found to significantly increase the occurrence of potential CD microbes, including members of the Comamonadaceae and Geobacteraceae families, which may enhance NSZD. Further work to explore and define this link is important for reliable estimation of biodegradation of petroleum hydrocarbon fuels. Furthermore, the outcomes suggest that the chemotactic parameter within existing NSZD models should be reviewed to accommodate CD accumulation in areas of naphthalene contamination, thereby providing a more accurate quantification of risk from petroleum impacts in subsurface environments, and the scale of risk mitigation due to NSZD

    Classification of patients with knee osteoarthritis in clinical phenotypes: data from the osteoarthritis initiative

    Get PDF
    <div><p>Objectives</p><p>The existence of phenotypes has been hypothesized to explain the large heterogeneity characterizing the knee osteoarthritis. In a previous systematic review of the literature, six main phenotypes were identified: Minimal Joint Disease (MJD), Malaligned Biomechanical (MB), Chronic Pain (CP), Inflammatory (I), Metabolic Syndrome (MS) and Bone and Cartilage Metabolism (BCM). The purpose of this study was to classify a sample of individuals with knee osteoarthritis (KOA) into pre-defined groups characterized by specific variables that can be linked to different disease mechanisms, and compare these phenotypes for demographic and health outcomes.</p><p>Methods</p><p>599 patients were selected from the OAI database FNIH at 24 months’ time to conduct the study. For each phenotype, cut offs of key variables were identified matching the results from previous studies in the field and the data available for the sample. The selection process consisted of 3 steps. At the end of each step, the subjects classified were excluded from the further classification stages. Patients meeting the criteria for more than one phenotype were classified separately into a ‘complex KOA’ group.</p><p>Results</p><p>Phenotype allocation (including complex KOA) was successful for 84% of cases with an overlap of 20%. Disease duration was shorter in the MJD while the CP phenotype included a larger number of Women (81%). A significant effect of phenotypes on WOMAC pain (F = 16.736 p <0.001) and WOMAC physical function (F = 14.676, p < 0.001) was identified after controlling for disease duration.</p><p>Conclusion</p><p>This study signifies the feasibility of a classification of KOA subjects in distinct phenotypes based on subgroup-specific characteristics.</p></div
    • …
    corecore