552 research outputs found

    The Effect of Systematic Error in Forced Oscillation Testing

    Get PDF
    One of the fundamental problems in flight dynamics is the formulation of aerodynamic forces and moments acting on an aircraft in arbitrary motion. Classically, conventional stability derivatives are used for the representation of aerodynamic loads in the aircraft equations of motion. However, for modern aircraft with highly nonlinear and unsteady aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular rates the conventional stability derivative model is no longer valid. Attempts to formulate aerodynamic model equations with unsteady terms are based on several different wind tunnel techniques: for example, captive, wind tunnel single degree-of-freedom, and wind tunnel free-flying techniques. One of the most common techniques is forced oscillation testing. However, the forced oscillation testing method does not address the systematic and systematic correlation errors from the test apparatus that cause inconsistencies in the measured oscillatory stability derivatives. The primary objective of this study is to identify the possible sources and magnitude of systematic error in representative dynamic test apparatuses. Sensitivities of the longitudinal stability derivatives to systematic errors are computed, using a high fidelity simulation of a forced oscillation test rig, and assessed using both Design of Experiments and Monte Carlo methods

    LC-MS based quantification of 2’-ribosylated nucleosides Ar(p) and Gr(p) in tRNA

    Get PDF
    RNA nucleosides are often naturally modified into complex non-canonical structures with key biological functions. Here we report LC-MS quantification of the Ar(p) and Gr(p) 2'-ribosylated nucleosides in tRNA using deuterium labelled standards, and the first detection of Gr(p) in complex fungi

    Cellular structure of qq-Brauer algebras

    Full text link
    In this paper we consider the qq-Brauer algebra over RR a commutative noetherian domain. We first construct a new basis for qq-Brauer algebras, and we then prove that it is a cell basis, and thus these algebras are cellular in the sense of Graham and Lehrer. In particular, they are shown to be an iterated inflation of Hecke algebras of type An−1.A_{n-1}. Moreover, when RR is a field of arbitrary characteristic, we determine for which parameters the qq-Brauer algebras are quasi-heredity. So the general theory of cellular algebras and quasi-hereditary algebras applies to qq-Brauer algebras. As a consequence, we can determine all irreducible representations of qq-Brauer algebras by linear algebra methods

    High Resolution Spectroscopy of Two-Dimensional Electron Systems

    Full text link
    Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunneling, yield measurements of the "single particle" density of states (SPDOS) spectrum of a system. The SPDOS is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proven difficult to probe spectroscopically. Here we present an improved version of time domain capacitance spectroscopy (TDCS) that now allows us to measure the SPDOS of a 2DES with unprecedented fidelity and resolution. Using TDCS, we perform measurements of a cold 2DES, providing the first direct measurements of the single-particle exchange-enhanced spin gap and single particle lifetimes in the quantum Hall system, as well as the first observations of exchange splitting of Landau levels not at the Fermi surface. The measurements reveal the difficult to reach and beautiful structure present in this highly correlated system far from the Fermi surface.Comment: There are formatting and minor textual differences between this version and the published version in Nature (follow the DOI link below

    Identification of Nedd4 E3 Ubiquitin Ligase as a Binding Partner and Regulator of MAK-V Protein Kinase

    Get PDF
    MAK-V/Hunk is a scantily characterized AMPK-like protein kinase. Recent findings identified MAK-V as a pro-survival and anti-apoptotic protein and revealed its role in embryonic development as well as in tumorigenesis and metastasis. However molecular mechanisms of MAK-V action and regulation of its activity remain largely unknown. We identified Nedd4 as an interaction partner for MAK-V protein kinase. However, this HECT-type E3 ubiquitin ligase is not involved in the control of MAK-V degradation by the ubiquitin-proteasome system that regulates MAK-V abundance in cells. However, Nedd4 in an ubiquitin ligase-independent manner rescued developmental defects in Xenopus embryos induced by MAK-V overexpression, suggesting physiological relevance of interaction between MAK-V and Nedd4. This identifies Nedd4 as the first known regulator of MAK-V function

    Atomic Structures of the 30S Subunit and Its Complexes with Ligands and Antibiotics

    Get PDF
    The two subunits that make up the ribosome have both distinct and cooperative functions. The 30S ribosomal subunit binds messenger RNA (mRNA) and is involved in the selection of cognate transfer RNA (tRNA) by monitoring codon–anticodon base-pairing during the decoding process. The 50S subunit catalyzes peptide-bond formation. Both subunits work in concert to move tRNAs and mRNAs relative to the ribosome in translocation, and both are the target of a large number of naturally occurring antibiotics. Thus, useful information about the mechanism of translation can be gleaned from structures of both individual subunits and the intact ribosome. In this paper, we describe our work on the determination of the atomic structure of the 30S ribosomal subunit and its complexes with RNA ligands, antibiotics, and initiation factor IF1. The results provide structural insights into how the ribosome recognizes cognate tRNA and discriminates against near-cognate tRNA. They also provide a structural basis for understanding the action of various antibiotics that target the 30S subunit

    Nanoclusters and nanolines: the effect of molybdenum oxide substrate stoichiometry on iron self-assembly

    Get PDF
    The growth of Fe nanostructures on the stoichiometric MoOâ‚‚/Mo(110) and oxygen-rich MoOâ‚‚+x /Mo(110) surfaces has been studied using low-temperature scanning tunnelling microscopy (STM) and density functional theory calculations. STM results indicate that at low coverage Fe nucleates on the MoOâ‚‚/Mo(110) surface, forming small, well-ordered nanoclusters of uniform size, each consisting of five Fe atoms. These five-atom clusters can agglomerate into larger nanostructures reflecting the substrate geometry, but they retain their individual character within the structure. Linear Fe nanocluster arrays are formed on the MoOâ‚‚/Mo(110) surface at room temperature when the surface coverage is greater than 0.6 monolayers. These nanocluster arrays follow the direction of the oxide rows of the strained MoOâ‚‚/Mo(110) surface. Slightly altering the preparation procedure of MoOâ‚‚/Mo(110) leads to the presence of oxygen adatoms on this surface. Fe deposition onto the oxygen-rich MoOâ‚‚+x /Mo(110) surface results in elongated nanostructures that reach up to 24 nm in length. These nanolines have a zigzag shape and are likely composed of partially oxidised Fe formed upon reaction with the oxygen-rich surface

    The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA

    Get PDF
    The ribosome selects a correct transfer RNA (tRNA) for each amino acid added to the polypeptide chain, as directed by messenger RNA. Aminoacyl-tRNA is delivered to the ribosome by elongation factor Tu (EF-Tu), which hydrolyzes guanosine triphosphate (GTP) and releases tRNA in response to codon recognition. The signaling pathway that leads to GTP hydrolysis upon codon recognition is critical to accurate decoding. Here we present the crystal structure of the ribosome complexed with EF-Tu and aminoacyl-tRNA, refined to 3.6 angstrom resolution. The structure reveals details of the tRNA distortion that allows aminoacyl-tRNA to interact simultaneously with the decoding center of the 30S subunit and EF-Tu at the factor binding site. A series of conformational changes in EF-Tu and aminoacyl-tRNA suggests a communication pathway between the decoding center and the guanosine triphosphatase center of EF-Tu

    The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA

    Get PDF
    The ribosome selects a correct transfer RNA (tRNA) for each amino acid added to the polypeptide chain, as directed by messenger RNA. Aminoacyl-tRNA is delivered to the ribosome by elongation factor Tu (EF-Tu), which hydrolyzes guanosine triphosphate (GTP) and releases tRNA in response to codon recognition. The signaling pathway that leads to GTP hydrolysis upon codon recognition is critical to accurate decoding. Here we present the crystal structure of the ribosome complexed with EF-Tu and aminoacyl-tRNA, refined to 3.6 angstrom resolution. The structure reveals details of the tRNA distortion that allows aminoacyl-tRNA to interact simultaneously with the decoding center of the 30S subunit and EF-Tu at the factor binding site. A series of conformational changes in EF-Tu and aminoacyl-tRNA suggests a communication pathway between the decoding center and the guanosine triphosphatase center of EF-Tu
    • …
    corecore