982 research outputs found

    The appearance, motion, and disappearance of three-dimensional magnetic null points

    Get PDF
    N.A.M. acknowledges support from NASA grants NNX11AB61G, NNX12AB25G, and NNX15AF43G; NASA contract NNM07AB07C; and NSF SHINE grants AGS-1156076 and AGS-1358342 to SAO. C.E.P. acknowledges support from the St Andrews 2013 STFC Consolidated grant.While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field, which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.Publisher PDFPeer reviewe

    The MASSIVE Survey - I. A Volume-Limited Integral-Field Spectroscopic Study of the Most Massive Early-Type Galaxies within 108 Mpc

    Full text link
    Massive early-type galaxies represent the modern-day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ~100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* > 10^{11.5} Msun and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.Comment: 19 pages, 14 figures. ApJ (2014) vol. 795, in pres

    The MASSIVE Survey II: Stellar Population Trends Out to Large Radius in Massive Early Type Galaxies

    Full text link
    We examine stellar population gradients in ~100 massive early type galaxies spanning 180 < sigma* < 370 km/s and M_K of -22.5 to -26.5 mag, observed as part of the MASSIVE survey (Ma et al. 2014). Using integral-field spectroscopy from the Mitchell Spectrograph on the 2.7m telescope at McDonald Observatory, we create stacked spectra as a function of radius for galaxies binned by their stellar velocity dispersion, stellar mass, and group richness. With excellent sampling at the highest stellar mass, we examine radial trends in stellar population properties extending to beyond twice the effective radius (~2.5 R_e). Specifically, we examine trends in age, metallicity, and abundance ratios of Mg, C, N, and Ca, and discuss the implications for star formation histories and elemental yields. At a fixed physical radius of 3-6 kpc (the likely size of the galaxy cores formed at high redshift) stellar age and [alpha/Fe] increase with increasing sigma* and depend only weakly on stellar mass, as we might expect if denser galaxies form their central cores earlier and faster. If we instead focus on 1-1.5 R_e, the trends in abundance and abundance ratio are washed out, as might be expected if the stars at large radius were accreted by smaller galaxies. Finally, we show that when controlling for \sigmastar, there are only very subtle differences in stellar population properties or gradients as a function of group richness; even at large radius internal properties matter more than environment in determining star formation history.Comment: 17 pages, 9 figures, accepted by ApJ; resubmitted with updated reference

    The complete mitochondrial genome of Axis porcinus (Mammalia: Cervidae) from Victoria, Australia, using MiSeq sequencing

    Get PDF
    The mitochondrial genome of the hog deer (Axis porcinus) was sequenced using an Illumina MiSeq. The assembled genome consists of 16,351 bp, and shared a 99.8% similarity to the published chital deer (Axis axis) genome, suggesting that they belong to the same species. Further research is ongoing to understand why these mitochondrial genomes are highly similar

    Distribution of Palinuridae and Scyllaridae phyllosoma larvae within the East Australian Current: a climate change hot spot

    Get PDF
    Many marine species are predicted to shift their ranges poleward due to rising ocean temperatures driven by climate change. For benthic marine species with pelagic larval stages, poleward range shifts are often facilitated through pelagic larval transport via western boundary currents (WBC). By surveying pelagic larval distributions within WBCs, species advected poleward of their known distributions can be identified and monitored. Palinurid and scyllarid lobster larvae (phyllosoma) have long pelagic larval durations, providing high potential for poleward advection. We surveyed spatial distribution of phyllosoma within the western-boundary East Australian Current. Due to difficulties morphologically identifying phyllosoma, we tested the utility of molecular identification using cytochrome c oxidase I (COI). From COI sequences of 56 phyllosoma and one postlarva, 65% of sequences consisted of good-quality mitochondrial DNA. Across water types sampled, scyllarid phyllosoma exhibited relatively homogeneous distribution, whereas palinurid phyllosoma exhibited heterogeneous distribution with greatest abundance inside a warm core eddy on the south coast of eastern Australia. Two tropical and one subtropical palinurid species were detected ~75–1800 km to the south or south-west of their known species distribution. Our results indicate tropical lobster species are reaching temperate regions, providing these species the opportunity to establish in temperate regions if or when environmental conditions become amenable to settlement

    Avidin cooperative allosterism upon binding biotin observed by differential changes in intrinsic fluorescence

    Get PDF
    Similar to streptavidin, the binding of biotin by avidin does not appear to be cooperative in the traditional sense of altered binding strength, though it appears to be cooperative in terms of ligand induced structural communication across subunits in the protein as previously shown for streptavidin. In this work we provide data from intrinsic tryptophan fluorescence as evidence of a cooperative structural change. The technique involves examination of the changes in fluorescence emission corresponding to the various tryptophan populations accompanying avidin-biotin binding. We note that the 335 nm emission population (i.e. more hydrophobic local environment) saturates prior to full ligation and the saturation of the 350 nm emission population commonly used in standard binding activity assays. We also note that total integrated fluorescence emission and peak height during the titration of ligand into streptavidin also reach saturation prior to the 4:1 stoichiometric end point. Unique to avidin and distinct from the behavior of streptavidin described in our prior work, the wavelength of maximum emission and full width at half maximum (FWHM) data do not saturate prior to the 4:1 stoichiometric end point. Avidin also exhibited larger FWHM for both apo and holo forms suggesting greater heterogeneity in local tryptophan environments, as compared to streptavidin. Taken together, the data suggests that the binding of the first 3 biotins effect greater structural changes in the protein than the final ligand in a similar way for avidin and streptavidin

    Temporal genetic patterns of diversity and structure evidence chaotic genetic patchiness in a spiny lobster

    Get PDF
    Population structure of many marine organisms is spatially patchy and varies within and between years, a phenomenon defined as chaotic genetic patchiness. This results from the combination of planktonic larval dispersal and environmental stochasticity. Additionally, in species with bi-partite life, postsettlement selection can magnify these genetic differences. The high fecundity (up to 500,000 eggs annually) and protracted larval duration (12–24 months) and dispersal of the southern rock lobster, Jasus edwardsii, make it a good test species for chaotic genetic patchiness and selection during early benthic life. Here, we used double digest restriction site-associated DNA sequencing (ddRADseq) to investigate chaotic genetic patchiness and postsettlement selection in this species. We assessed differences in genetic structure and diversity of recently settled pueruli across four settlement years and between two sites in southeast Australia separated by approximately 1,000 km. Postsettlement selection was investigated by identifying loci under putative positive selection between recently settled pueruli and postpueruli and quantifying differences in the magnitude and strength of the selection at each year and site. Genetic differences within and among sites through time in neutral SNP markers indicated chaotic genetic patchiness. Recently settled puerulus at the southernmost site exhibited lower genetic diversity during years of low puerulus catches, further supporting this hypothesis. Finally, analyses of outlier SNPs detected fluctuations in the magnitude and strength of the markers putatively under positive selection over space and time. One locus under putative positive selection was consistent at both locations during the same years, suggesting the existence of weak postsettlement selection

    Detection of changes in mitochondrial hydrogen sulfide (H2S) in vivo in the fish model Poecilia mexicana (Poeciliidae)

    Get PDF
    In this paper, we outline the use of a mitochondria-targeted ratiometric mass spectrometry probe, MitoA, to detect in vivo changes in mitochondrial hydrogen sulfide (H2S) in Poecilia mexicana (family Poeciliidae). MitoA is introduced via intraperitoneal injection into the animal and is taken up by mitochondria, where it reacts with H2S to form the product MitoN. The MitoN/MitoA ratio can be used to assess relative changes in the amounts of mitochondrial H2S produced over time. We describe the use of MitoA in the fish species P. mexicana to illustrate the steps for adopting the use of MitoA in a new organism, including extraction and purification of MitoA and MitoN from tissues followed by tandem mass spectrometry. In this proof-of-concept study we exposed H2S tolerant P. mexicana to 59 µM free H2S for 5 h, which resulted in increased MitoN/MitoA in brain and gills, but not in liver or muscle, demonstrating increased mitochondrial H2S levels in select tissues following whole-animal H2S exposure. This is the first time that accumulation of H2S has been observed in vivo during whole-animal exposure to free H2S using MitoA
    corecore