8 research outputs found

    Pathophysiological mechanisms of autoimmunity

    No full text
    International audienceAutoimmune diseases (AIDs) are chronic disorders characterized by inflammatory reactions against self‐antigens that can be either systemic or organ specific. AIDs can differ in their epidemiologic features and clinical presentations, yet all share a remarkable complexity. AIDs result from an interplay of genetic and epigenetic factors with environmental components that are associated with imbalances in the immune system. Many of the pathogenic mechanisms of AIDs are also implicated in myasthenia gravis (MG), an AID in which inflammation of the thymus leads to a neuromuscular disorder. Our goal here is to highlight the similarities and differences between MG and other AIDs by reviewing the common transcriptome signatures and the development of germinal centers and by discussing some unresolved questions about autoimmune mechanisms. This review will propose hypotheses to explain the origin of regulatory T (Treg) cell defects and the causes of chronicity and specificity of AIDs

    Thymus involvement in early-onset myasthenia gravis

    No full text
    International audienceIt has long been established that the thymus plays a central role in autoimmune myasthenia gravis (MG) because of either thymoma or thymic hyperplasia of lymphoproliferative origin. In this review, we discuss thymic changes associated with thymic hyperplasia and their implications in the development of an autoimmune response against the acetylcholine receptor (AChR).The hyperplastic MG thymus displays all the characteristics of tertiary lymphoid organs (TLOs): neoangiogenic processes with high endothelial venule and lymphatic vessel development, chemokine overexpression favoring peripheral cell recruitment, and ectopic germinal center development. As thymic epithelial cells or myoid cells express AChR, a specific antigen presentation can easily occur within the thymus in the presence of recruited peripheral cells, such as B cells and T follicular helper cells. How the thymus turns into a TLO is not known, but local inflammation seems mandatory. Interferon (IFN)‐β is overexpressed in MG thymus and could orchestrate thymic changes associated with MG. Knowledge about how IFN‐β is induced in MG thymus and why its expression is sustained even long after disease onset would be of interest in the future to better understand the etiological and physiopathological mechanisms involved in autoimmune MG

    Preconditioned mesenchymal stem cells treat myasthenia gravis in a humanized preclinical model

    No full text
    International audienceMyasthenia gravis (MG) with anti–acetylcholine receptor (AChR) Abs is an autoimmune disease characterized by severe defects in immune regulation and thymic inflammation. Because mesenchymal stem cells (MSCs) display immunomodulatory features, we investigated whether and how in vitro–preconditioned human MSCs (cMSCs) could treat MG disease. We developed a new humanized preclinical model by subcutaneously grafting thymic MG fragments into immunodeficient NSG mice (NSG-MG model). Ninety percent of the animals displayed human anti-AChR Abs in the serum, and 50% of the animals displayed MG-like symptoms that correlated with the loss of AChR at the muscle endplates. Interestingly, each mouse experiment recapitulated the MG features of each patient. We next demonstrated that cMSCs markedly improved MG, reducing the level of anti-AChR Abs in the serum and restoring AChR expression at the muscle endplate. Resting MSCs had a smaller effect. Finally, we showed that the underlying mechanisms involved (a) the inhibition of cell proliferation, (b) the inhibition of B cell–related and costimulatory molecules, and (c) the activation of the complement regulator DAF/CD55. In conclusion, this study shows that a preconditioning step promotes the therapeutic effects of MSCs via combined mechanisms, making cMSCs a promising strategy for treating MG and potentially other autoimmune diseases

    Single-cell transcriptomic profiling of the mouse cochlea: An atlas for targeted therapies

    No full text
    International audienceFunctional molecular characterization of the cochlea has mainly been driven by the deciphering of the genetic architecture of sensorineural deafness. As a result, the search for curative treatments, which are sorely lacking in the hearing field, has become a potentially achievable objective, particularly via cochlear gene and cell therapies. To this end, a complete inventory of cochlear cell types, with an in-depth characterization of their gene expression profiles right up to their final differentiation, is indispensable. We therefore generated a single-cell transcriptomic atlas of the mouse cochlea based on an analysis of more than 120,000 cells on postnatal day 8 (P8), during the prehearing period, P12, corresponding to hearing onset, and P20, when cochlear maturation is almost complete. By combining whole-cell and nuclear transcript analyses with extensive in situ RNA hybridization assays, we characterized the transcriptomic signatures covering nearly all cochlear cell types and developed cell type–specific markers. Three cell types were discovered; two of them contribute to the modiolus which houses the primary auditory neurons and blood vessels, and the third one consists in cells lining the scala vestibuli. The results also shed light on the molecular basis of the tonotopic gradient of the biophysical characteristics of the basilar membrane that critically underlies cochlear passive sound frequency analysis. Finally, overlooked expression of deafness genes in several cochlear cell types was also unveiled. This atlas paves the way for the deciphering of the gene regulatory networks controlling cochlear cell differentiation and maturation, essential for the development of effective targeted treatments

    Impact of bone marrow-derived mesenchymal stromal cells on experimental xenogeneic graft-versus-host disease

    Full text link
    Background aims. Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation caused by donor T cells reacting against host tissues. Previous studies have suggested that mesenchymal stromal cells (MSCs) could exert potent immunosuppressive effects. Methods. The ability of human bone marrow derived MSCs to prevent xenogeneic GVHD in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice and in NOD/SCID/interleukin-2Rg(null) (NSG) mice transplanted with human peripheral blood mononuclear cells (PBMCs) was assessed. Results. Injection of 200 106 human PBMCs intraperitoneally (IP) into sub-lethally (3.0 Gy) irradiated NOD/SCID mice also given anti-asialo GM1 antibodies IP 1 day prior and 8 days after transplantation induced lethal xenogeneic GVHD in all tested mice. Co-injection of 2 106 MSCs IP on day 0 did not prevent lethal xenogeneic GVHD induced by injection of human PBMCs. Similarly, injection of 30 106 human PBMCs IP into sub-lethally (2.5 Gy) irradiated NSG mice induced a lethal xenogeneic GVHD in all tested mice. Injection of 3 106 MSCs IP on days 0, 7, 14 and 21 did not prevent lethal xenogeneic GVHD induced by injection of human PBMCs. Conclusions. Injection of MSCs did not prevent xenogeneic GVHD in these two humanized mice models

    Thinking out of the box - New approaches to controlling GVHD

    Full text link
    Graft-versus-host disease (GVHD) remains a major limitation of allogeneic hematopoietic cell transplantation (allo-HCT). Despite major advances in the understanding of GVHD pathogenesis, standard GVHD prophylaxis regimens continue to bebased on the combination of a calcineurin inhibitor with an antimetabolite, while first line treatmentsstill relies on high-dose corticosteroids. Further, no second line treatment has emerged thus far in acute or chronic GVHD patients who failed on corticosteroids. After briefly reviewing current standards of GVHD prevention and treatment, this article will discuss recent approaches that might change GVHD prophylaxis / treatment in the next decades, with a special focus on recently developed immunoregulatory strategies based on infusion of mesenchymal stromal or regulatory T-cells, or on injection of lowdose interleukin-2
    corecore