13 research outputs found

    The Chemokine CCL2 Protects Against Methylmercury Neurotoxicity

    Get PDF
    Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxicatio

    Relationships between age-dependent changes in the effect of almitrine on H(+)-ATPase/ATPsynthase and the pattern of membrane fatty acid composition.

    No full text
    International audienceThe effects of almitrine on ATPase/ATPsynthase previously described in beef heart mitochondria (Rigoulet et al. (1990) Biochim. Biophys. Acta 1018, 91-97) are also observed in liver mitochondria isolated from rats older than 7 weeks. In contrast, in rats younger than 5 weeks, almitrine at the same concentration has no effect on the ATPase/ATPsynthase complex. This age-dependent action of almitrine is well correlated with age-dependent modifications of two fatty acids: linoleic and docosahexaenoic acids. The possibility of a change in H+/ATP stoichiometry of the ATPase/ATPsynthase induced by almitrine seems related to more general modifications of membrane properties during growth of the rat

    Relationships between age-dependent changes in the effect of almitrine on H(+)-ATPase/ATPsynthase and the pattern of membrane fatty acid composition.

    No full text
    International audienceThe effects of almitrine on ATPase/ATPsynthase previously described in beef heart mitochondria (Rigoulet et al. (1990) Biochim. Biophys. Acta 1018, 91-97) are also observed in liver mitochondria isolated from rats older than 7 weeks. In contrast, in rats younger than 5 weeks, almitrine at the same concentration has no effect on the ATPase/ATPsynthase complex. This age-dependent action of almitrine is well correlated with age-dependent modifications of two fatty acids: linoleic and docosahexaenoic acids. The possibility of a change in H+/ATP stoichiometry of the ATPase/ATPsynthase induced by almitrine seems related to more general modifications of membrane properties during growth of the rat

    Alteration of mitochondrial function in a model of chronic ischemia in vivo in rat heart.

    No full text
    International audienceThe aim of this study was to investigate mitochondrial alterations in an animal model of chronic myocardial ischemia in rats obtained by surgical constriction of the left coronary artery. Resting coronary blood flow was measured using the fluorescent microsphere technique. Contractile function, defined by rate-pressure product, and myocardial oxygen consumption were measured in a Langendorff preparation. The mitochondrial function was evaluated on permeabilized skinned fibers. Three weeks after surgery, ischemic hearts showed a significant decrease in coronary blood flow compared with sham. Hemodynamic measurements showed a significant systolic and diastolic dysfunction. Alterations in mitochondrial function in ischemic hearts were mainly characterized by a significant decrease in the maximal velocity and apparent half-saturation constant for ADP, loss of the stimulatory effect of creatine, and a stimulatory effect of exogenous cytochrome c. These functional alterations were supported by structural alterations characterized by mitochondrial clustering and swelling associated with membrane rupture. We conclude that the alterations in systolic function after chronic ischemia are supported by severe modifications of mitochondrial structure and function

    Cardioprotection by ischemic preconditioning preserves mitochondrial function and functional coupling between adenine nucleotide translocase and creatine kinase.

    No full text
    International audienceM. N. Laclau, S. Boudina, J. B. Thambo, L. Tariosse, G. Gouverneur, S. Bonoron-Adèle, V. A. Saks, K. D. Garlid and P. Dos Santos. Cardioprotection by Ischemic Preconditioning Preserves Mitochondrial Function and Functional Coupling Between Adenine Nucleotide Translocase and Creatine Kinase. Journal of Molecular and Cellular Cardiology (2001) 33, 947-956. This study investigates the effect of ischemic preconditioning on mitochondrial function, including functional coupling between the adenine nucleotide translocase and mitochondrial creatine kinase, which is among the first reactions to be altered in ischemia. Three groups of Langendorff-perfused rat hearts were studied: a control group, a group subjected to 30 min ischemia followed by 15 min reperfusion, and a group subjected to ischemic preconditioning prior to 30 min ischemia and 15 min reperfusion. Ischemic preconditioning significantly delayed the onset and amplitude of contracture during ischemia, decreased enzymatic release, and improved the recovery of heart contractile function after reperfusion. Mitochondrial function was assessed in permeabilized skinned fibers. The protective effect of preconditioning was associated with preservation of mitochondrial function, as evidenced by maintenance of the high K(1/2)for ADP in regulation of mitochondrial respiration and V(max)of respiration, the near absence of respiratory stimulation by exogenous cytochrome c, and preservation of functional coupling between mitochondrial creatine kinase and adenine nucleotide translocase. These data suggest that ischemic preconditioning preserves the structure-function of the intermembrane space, perhaps by opening the mitochondrial ATP-sensitive K(+)channel. The consequence is preservation of energy transfer processes from mitochondria to ATP-utilizing sites in the cytosol. Both of these factors may contribute to cardioprotection and better functional recovery of preconditioned hearts
    corecore