18 research outputs found

    A Systematic Review of Digital vs Analog Drainage for Air Leak After Surgical Resection or Spontaneous Pneumothorax

    Get PDF
    Background The concerns regarding air leak after lung surgery or spontaneous pneumothorax include detection and duration. Prior studies have suggested that digital drainage systems permit shorter chest tube duration and hospital length of stay (LOS) by earlier detection of air leak cessation. We conducted a systematic review to assess the impact of digital drainage on chest tube duration and hospital LOS after pulmonary surgery and spontaneous pneumothorax. Methods Ovid MEDLINE, PubMed, Embase, the Cochrane Library, Scopus, and Google Scholar were searched from inception through January 2019. We included randomized controlled trials, cohort studies, and case series of adult patients, using digital or traditional drainage devices for air leaks of either postsurgical or spontaneous pneumothorax origin. Results Of 1,272 references reviewed, 23 articles were included. Nineteen articles addressed postoperative air leak, and four articles pertained to air leak after spontaneous pneumothorax. Thirteen studies were randomized controlled trials. Digital drainage resulted in significantly shorter chest tube duration in eight of 18 studies and shorter hospital LOS in six of 14 studies for postoperative air leak. For postpneumothorax air leak, digital drainage resulted in significantly shorter chest tube duration in two of three studies and hospital LOS in one of two studies with an analog control group. Conclusions Most studies show no significant differences in chest tube duration and hospital LOS with digital vs analog drainage systems for patients with air leak after pulmonary resection. For post-spontaneous pneumothorax air leak, the limited published evidence suggests shorter chest tube duration and hospital LOS with digital drainage systems

    Comprehensive Genetic Testing Identifies Targetable Genomic Alterations in Most Patients with Non-Small Cell Lung Cancer, Specifically Adenocarcinoma, Single Institute Investigation

    Get PDF
    This study reviews extensive genetic analysis in advanced non-small cell lung cancer (NSCLC) patients in order to: describe how targetable mutation genes interrelate with the genes identified as variants of unknown significance; assess the percentage of patients with a potentially targetable genetic alterations; evaluate the percentage of patients who had concurrent alterations, previously considered to be mutually exclusive; and characterize the molecular subset of KRAS. Thoracic Oncology Research Program Databases at the University of Chicago provided patient demographics, pathology, and results of genetic testing. 364 patients including 289 adenocarcinoma underwent genotype testing by various platforms such as FoundationOne, Caris Molecular Intelligence, and Response Genetics Inc. For the entire adenocarcinoma cohort, 25% of patients were African Americans; 90% of KRAS mutations were detected in smokers, including current and former smokers; 46% of EGFR and 61% of ALK alterations were detected in never smokers. 99.4% of patients, whose samples were analyzed by next-generation sequencing (NGS), had genetic alterations identified with an average of 10.8 alterations/tumor throughout different tumor subtypes. However, mutations were not mutually exclusive. NGS in this study identified potentially targetable genetic alterations in the majority of patients tested, detected concurrent alterations and provided information on variants of unknown significance at this time but potentially targetable in the future

    Electromagnetic Navigation Bronchoscopy for Peripheral Pulmonary Lesions: One-Year Results of the Prospective, Multicenter NAVIGATE Study

    Get PDF

    Multimodal imaging guidance for laser ablation in tracheal stenosis.

    No full text
    Objective/hypothesisLaser-induced damage of tracheal wall microstructures might contribute to recurrence after bronchoscopic treatment of tracheal strictures. The purpose of this study was to demonstrate how multimodal imaging using white light bronchoscopy (WLB), endobronchial ultrasound (EBUS), and optical coherence tomography (OCT) might identify in vivo airway wall changes before and resulting from Nd:YAG laser ablation and dilation of tracheal stenosis.Study designCase study.MethodsCommercially available WLB, high frequency EBUS using a 20-MHz radial probe and time-domain, frontal imaging OCT systems were used to characterize the extent, morphology, and airway wall microstructures at the area of hypertrophic fibrotic tissue formation before, during and after treatment of postintubation tracheal stenosis.ResultsWLB revealed the location of a complex, extensive, severe stricture. EBUS showed a homogeneous layer overlying a hyperechogenic layer corresponding to disrupted cartilage. OCT showed a homogeneous light backscattering layer and absence of layered microstructures, confirming absence in close proximity of normal airway wall. After laser ablation, OCT of charred tissue showed high backscattering and shadowing artifacts. OCT of noncharred tissue showed a thinner, homogeneous, light backscattering layer. EBUS showed thinner but persistent hypertrophic tissue suggesting incomplete treatment. WLB revealed improved airway patency postprocedure and recurrence 3 weeks later.ConclusionsEBUS identified cartilage disruption and residual hypertrophic tissue, the evidence of which might contribute to recurrence. OCT revealed homogeneous light backscaterring representing persistent noncharred hypertrophic tissues but it did not visualize cartilage disruption. Future studies are warranted to confirm whether these technologies can help guide bronchoscopic treatments
    corecore