213 research outputs found
Performance Enhancement in Sliding Vane Rotary Compressors through a Sprayed Oil Injection Technology
In Sliding Vane Rotary Compressors, as well as in most of positive displacement machines, the oil is injected to fulfill sealing and lubrication purposes. However, the oil injection could produce an additional effect during the compression phase with a great saving potential from the energetic point of view. Being the air inside the cell at a higher temperature than the oil injected, a cooling effect could be achieved so decreasing the mechanical power required for the compression. At the moment, the oil is introduced inside the compressor vanes through a series of simple holes that are only able to produce solid jets. In this way any effective heat transfer is prevented, as demonstrated by p-V measurements inside the cells during the compression phase. In the current study, a theoretical model of a sprayed oil injection technology was developed and further experimentally validated. The oil was injected along the axial length of the compressor through a number of pressure swirl atomizers which produced a very fine spray. The conservation equations, solved with a Lagrangian approach, allowed to track the droplets evolution from the injection until the impingement onto the metallic surfaces of the vanes. The theoretical approach assessed the cooling effect due to the high surface to volume ratio of the droplets and a reduction of the indicated power was predicted. The model validation was carried out through a test campaign on an mid-size sliding vane compressor equipped with a series of pressure swirl injectors. The reconstruction of the indicator diagram as well as the direct measurements of torque and revolution speed revealed a reduction of the mechanical power absorbed close to 7 % using an injection pressure of 20 bar. The model is in a satisfactory agreement with the tests and it also confirms the experimental trends available in the literature. A parametric analysis on the injection pressure and temperature and on the cone spray angle was eventually carried out in order to identify an optimal set of operating injection parameters
Bioadhesive Matrix Tablets Loaded with Lipophilic Nanoparticles as Vehicles for Drugs for Periodontitis Treatment: Development and Characterization
Periodontitis treatment is usually focused on the reduction or eradication of periodontal pathogens using antibiotics against anaerobic bacteria, such as metronidazole (MTR). Moreover, recently the correlation between periodontal diseases and overexpression of reactive oxygen species (ROS) led to the introduction of antioxidant biomolecules in therapy. In this work, bioadhesive buccal tablets, consisting of a hydrophilic matrix loaded with metronidazole and lipophilic nanoparticles as a vehicle of curcumin, were developed. Curcumin (CUR)-loaded nanostructured lipid carriers (NLC) were prepared using glycyrrhetic acid, hexadecanol, isopropyl palmitate and Tween®80 as a surfactant. As method, homogenization followed by high-frequency sonication was used. After dialysis, CUR-NLC dispersion was evaluated in terms of drug loading (DL, 2.2% w/w) and drug recovery (DR, 88% w/w). NLC, characterized by dynamic light scattering and scanning electron microscopy (SEM), exhibited a spherical shape, an average particle size of 121.6 nm and PDI and PZ values considered optimal for a colloidal nanoparticle dispersion indicating good stability of the system. Subsequently, a hydrophilic sponge was obtained by lyophilization of a gel based on trehalose, Natrosol and PVP-K90, loaded with CUR-NLC and MTR. By compression of the sponge, matrix tablets were obtained and characterized in term of porosity, swelling index, mucoadhesion and drugs release. The ability of the matrix tablets to release CUR and MTR when applied on buccal mucosa and the aptitude of actives to penetrate and/or permeate the tissue were evaluated. The data demonstrate the ability of NLC to promote the penetration of CUR into the lipophilic domains of the mucosal membrane, while MTR can penetrate and permeate the mucosal tissue, where it can perform a loco-regional antibacterial activity. These results strongly support the possibility of using this novel matrix tablet for delivering MTR together with CUR for topical treatment of periodontal diseases
development and test of a portable device to monitor the health status of sarda breed sheep by the measurement of the milk electrical conductivity
The electrical conductivity (EC) of milk is a parameter which is often used for identifying sub-clinical mastitis in dairy animals. It is widely used for cattle, and is measured either by means of probes integrated into the milking machine or by means of portable devices. However this is not the case for small ruminants, where the available devices are few. The aim of this study is to deepen the knowledge of about the relationship between EC and certain constituents of Sarda sheep milk, and thus to develop a portable device specifically designed for on-site measurement of conductivity and to estimate the somatic cell count (SCC) of Sarda sheep milk. Therefore, the device allows a rapid test for checking the acceptability of milk to monitor the effects of udder infection. The receiver operating characteristic (ROC) method was used to evaluate how efficacious EC was in discriminating between animals with a somatic cell level higher or lower of a threshold value previously defined. The cut-off values, sensitivity, specificity and the area under the ROC curve for EC were, respectively, 4.835 mS/cm, 73.08, 75.46 and 0.804, using a threshold of 700 000 cells/ml. Our results gave a positive evaluation of the portable device that we had designed for estimating the SCC in sheep milk. Only 8.8% of the samples were incorrectly identified as negative. A portable device for EC measurement is a useful tool for monitoring the somatic cell level individually, and allows early and efficacious action to contrast new intramammary infections
Modeling and Experimental Activities on a Small-scale Sliding Vane Pump for ORC-based Waste heat Recovery Applications☆
Abstract Pumping work in energy recovery units based on Organic Rankine Cycles (ORC) can severely affect the net power output recovered. Nevertheless, in recent years scientific andindustrial communities mainly focused on expanders' development. In order to address this lack of know-how and equipment, the current paper presents the development of a positive displacement ORC pump based on the sliding vane rotary technology. The machine was installed in a power unit for low-medium grade thermal energy recoverythat operated with oil at 70-120C as upper thermal source and tap water as lower one. Working fluid was R236fa while cycle pressure ratio ranged from 2.8 to 3.7. The ORC pump was also tested at different revolution speedssuch that mass flow rate varied between 0.05kg/s and 0.12kg/s. These experimental data were further used to validate a comprehensive one-dimensional model that takes into account fluid dynamic filling and emptying processes, closed vane transformation and leakages at blade tip, rotor slots and end walls clearances. Viscous and dry friction phenomena occurring between components in relative motion were additionally considered. A full operating map of the sliding vane pump was eventually retrieved to explore multiple off-design operating conditions. The parametric and modular structure of the model will act as a design platform to outline enhanced ORC sliding vane pump prototypes
Mechanical Energy Recovery from Low Grade Thermal Energy Sources
An ORC based power plant for waste heat recovery in stationary applications has been developed and experimentally characterized. The aim of the study was to investigate the performance of a sliding vane rotary expander as the device to convert the enthalpy of the working fluid, namely R236fa, into mechanical and electric energy. A theoretical model of the expander supported the design and allowed to assess the thermodynamic transformations that take place in it. Furthermore, a deep experimental campaign explored the behavior of the expander and the one of the recovery system also at off design conditions. The experimental activity on the expander included the reconstruction of the indicated diagram using a set of high frequency piezoelectric pressure transducers that provided an accurate prediction of the pressure evolution inside the cell. The overall cycle efficiency achieved was close to 8% and further improvements concerned to the expander design have been addressed. The temperature of the upper thermal source at around 120 °C and the mechanical output power close to 2 kW make the expander and the whole system suitable for plenty of potential recovery applications. © 2013 The Authors
Recommended from our members
Numerical CFD simulations on a small-scale ORC expander using a customized grid generation methodology
Positive displacement machines are the most suitable devices for small-scale waste heat to power conversion units based on an Organic Rankine Cycle (ORC) due to their capabilities of handling small mass flow rates and high pressure ratios. Among the technologies, sliding vane machines provide unique features such as low operating revolution speed, geometrical flexibility and uncomplicated manufacturing. Nonetheless, research and product development in this field have been constrained by the lack of interfaces between deforming and moving fluid domains that characterize sliding vane devices and the design tools at the state of the art. This research work tackles this challenge and presents the development of an analytical grid generation for sliding vane machines that is based on user defined nodal displacement. Through this approach, the numerical methodology discretizes the fluid domains enclosed between the cells and ensures conservation of intrinsic quantities by maintaining the cell connectivity and structure. Transient 3D single phase simulations on a small scale ORC expander were further set up in the ANSYS CFX solver and provided insights on the main flow field as well as in the leakage paths between rotor blade tips and casing. The numerical results were eventually validated with reference to an experimental dataset related to a waste heat to power conversion application in compressed air systems where the sliding vane ORC expander worked with R236fa, at a pressure ratio of 2.65 and at 1551 RPM
Omics approaches to understanding the efficacy and safety of disease-modifying treatments in multiple sclerosis
From the perspective of precision medicine, the challenge for the future is to improve the accuracy of diagnosis, prognosis, and prediction of therapeutic responses through the identification of biomarkers. In this framework, the omics sciences (genomics, transcriptomics, proteomics, and metabolomics) and their combined use represent innovative approaches for the exploration of the complexity and heterogeneity of multiple sclerosis (MS). This review examines the evidence currently available on the application of omics sciences to MS, analyses the methods, their limitations, the samples used, and their characteristics, with a particular focus on biomarkers associated with the disease state, exposure to disease-modifying treatments (DMTs), and drug efficacies and safety profiles
conceptual design and control strategy of a robotic cell for precision assembly in radar antenna systems
Abstract Dip-Brazing is a metal-joining process in which two or more metal items are joined together using a low-temperature melting element as filler. In telecommunication field, this process is used to fabricate radar antenna systems. The process begins with the assembly of the parts constituting the antenna and the thin filler sheet used to join the parts. The mechanical deformations of the micro-pins of the parts allow to obtain a more compact mechanical assembly, before than the antenna system is subjected to an immersion cycle used for adjoining the parts. In this work, we present the design of the robotic cell to automate the assembly procedure in the aluminum dip-brazing of antenna in MBDA missile systems. In particular, we propose a robotic cell using two stations: i) assembly, using a SCARA manipulator; ii) riveting, using a three-axis cartesian robot designed for positioning a radial riveting unit. Motion control of the robots and scheduling of the operations is presented. Experiments simulated in a virtual environment show an almost perfect tracking of the designed trajectories. The standardization of the procedure as well as the reduction of its execution time is thus achieved for the industrial scenario
Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing-Remitting and Primary Progressive Multiple Sclerosis
Background: Multiple sclerosis (MS) is a chronic immunemediated disease of the central nervous system with a highly variable clinical presentation and disease progression. In this study, we investigate the metabolomics profile of patients affected by relapsing-remitting MS (RRMS)and primary progressive MS (PPMS), in order to find potential biomarkers to distinguish between the two forms. Methods: Cerebrospinal Fluid CSF and blood samples of 34 patients (RRMS n = 22, PPMS n = 12) were collected. Nuclear magnetic resonance (H-1-NMR) and mass spectrometry (coupled with a gas chromatography and liquid chromatography) were used as analytical techniques. Subsequently, a multivariate statistical analysis was performed; the resulting significant variables underwent U-Mann-Whitney test and correction for multiple comparisons. Receiver Operating Characteristic ROC curves were built and the pathways analysis was conducted. Results: The analysis of the serum and the CSF of the two classes, allowed the identification of several altered metabolites (lipids, biogenic amines, and amino acids). The pathways analysis indicated the following pathways were affected: Glutathione metabolism, nitrogen metabolism, glutamine-glutamate metabolism, arginine-ornithine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis etc. Conclusion: The analysis allowed the identification of a set of metabolites able to classify RRMS and PPMS patients, each of whom express different patterns of metabolites in the two biofluids
Challenges for Children with Cochlear Implants in Everyday Listening Scenarios: The Competitive Effect of Noise and Face Masks on Speech Intelligibility
Speech intelligibility (SI) tests under realistic acoustic scenarios are complex tasks to perform. Optimal acoustics, in terms of reverberation and noise, are thus needed. This is particularly true in the presence of young hard-of-hearing (HoH) children equipped with cochlear implants who need speech to be highly intelligible to learn. During the COVID-19 pandemic starting in early 2020, wearing face masks became common to avoid the spread of infection, mainly impacting the increasingly challenging task of listening for HoH listeners. This study investigated the influence of different types of face masks on speech intelligibility and listening difficulty under competitive noise scenarios. Fourteen children with cochlear implants were involved, as well as six children with typical hearing. Three types of face masks with different acoustic, filtration, and breathability characteristics were considered; three signal-to-noise ratios (SNR) of +10 dB, +5 dB, and 0 dB were used. As expected, lower SNRs corresponded to lower speech intelligibility, and SI without a mask was similar to that obtained with a mask at the lowest acoustic attenuation, albeit with a low filtration efficiency. These preliminary outcomes help improve speech communication strategies in classrooms to support optimal listening conditions
- …