2,557 research outputs found
Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment
We develop a theoretical analysis of four-wave mixing used to generate photon
pairs useful for quantum information processing. The analysis applies to a
single mode microstructured fibre pumped by an ultra-short coherent pulse in
the normal dispersion region. Given the values of the optical propagation
constant inside the fibre, we can estimate the created number of photon pairs
per pulse, their central wavelength and their respective bandwidth. We use the
experimental results from a picosecond source of correlated photon pairs using
a micro-structured fibre to validate the model. The fibre is pumped in the
normal dispersion regime at 708nm and phase matching is satisfied for widely
spaced parametric wavelengths of 586nm and 894nm. We measure the number of
photons per pulse using a loss-independent coincidence scheme and compare the
results with the theoretical expectation. We show a good agreement between the
theoretical expectations and the experimental results for various fibre lengths
and pump powers.Comment: 23 pages, 9 figure
Applications of control theory
Applications of control theory are considered in the areas of decoupling and wake steering control of submersibles, a method of electrohydraulic conversion with no moving parts, and socio-economic system modelling
Experimental Predictions of The Functional Response of A Freshwater Fish
The functional response is the relationship between the feeding rate of an animal and its food density. It is reliant on two basic parameters; the volume searched for prey per unit time (searching rate) and the time taken to consume each prey item (handling time). As fish functional responses can be difficult to determine directly, it may be more feasible to measure their underlying behavioural parameters in controlled conditions and use these to predict the functional response. Here, we tested how accurately a Type II functional response model predicted the observed functional response of roach Rutilus rutilus, a visually foraging fish, and compared it with Type I functional response. Foraging experiments were performed by exposing fish in tank aquaria to a range of food densities, with their response captured using a two-camera videography system. This system was validated and was able to accurately measure fish behaviour in the aquaria, and enabled estimates of fish reaction distance, swimming speed (from which searching rate was calculated) and handling time to be measured. The parameterised Type II functional response model accurately predicted the observed functional response and was superior to the Type I model. These outputs suggest it will be possible to accurately measure behavioural parameters in other animal species and use these to predict the functional response in situations where it cannot be observed directly
Fourier transform pure nuclear quadrupole resonance by pulsed field cycling
We report the observation of Fourier transform pure NQR by pulsed field cycling. For deuterium, well resolved spectra are obtained with high sensitivity showing the low frequency nu0 lines and allowing assignments of quadrupole couplings and asymmetry parameters to inequivalent deuterons. The technique is ideally applicable to nuclei with low quadrupolar frequencies (e.g., 2D, 7Li, 11B, 27Al, 23Na, 14N) and makes possible high resolution structure determination in polycrystalline or disordered materials
Amplitude dependent frequency, desynchronization, and stabilization in noisy metapopulation dynamics
The enigmatic stability of population oscillations within ecological systems
is analyzed. The underlying mechanism is presented in the framework of two
interacting species free to migrate between two spatial patches. It is shown
that that the combined effects of migration and noise cannot account for the
stabilization. The missing ingredient is the dependence of the oscillations'
frequency upon their amplitude; with that, noise-induced differences between
patches are amplified due to the frequency gradient. Migration among
desynchronized regions then stabilizes a "soft" limit cycle in the vicinity of
the homogenous manifold. A simple model of diffusively coupled oscillators
allows the derivation of quantitative results, like the functional dependence
of the desynchronization upon diffusion strength and frequency differences. The
oscillations' amplitude is shown to be (almost) noise independent. The results
are compared with a numerical integration of the marginally stable
Lotka-Volterra equations. An unstable system is extinction-prone for small
noise, but stabilizes at larger noise intensity
Recommended from our members
The effects of maize planting density and weeding regimes on light and water use
Light and water are among essential resources required for production of photosynthates in plants. A study on the effects of weeding regimes and maize planting density on light and water use was conducted during the 2001/2
short and 2002 long rain seasons at Muguga in - the central highlands of Kenya. Weeding regimes were: weed
free (W1), weedy (W2), herbicide (W3) and hand weeding twice (W4). Maize planting densities were 9 (D1) and
18 plants m-2 (D2) intercropped with Phaseolus vulgaris (beans). The experiment was laid as randomized complete block design replicated four times and repeated twice. All plots were thinned to 4 plants m-2 at tasseling
stage (96 DAE) and thinnings quantified as forage. Soil moisture content (SMC), photosynthetically active radiation (PAR) interception, evapo-transpiration (ET crop), water use efficiency (WUE), and harvest index (HI), were determined. Percent PAR was higher in D2 than in D1 before thinning but higher in D1 than in D2 after
thinning in both seasons. PAR interception was highest in W2 but similar in W1, W3 and W4 in both seasons. SMC was significantly lower in W2 but similar in W1, W3 and W4. D2 had lower SMC than D1 in season two. Weeding regime significantly influenced ET crop, while planting density and weeding regime significantly influenced WUE and HI. D2 maximizes water and light use for forage production but results to increased intra-specific plant competition for water and light severely before thinning (96 DAE) that reduce grain yield in dual purpose maize, relative to D1
Small drill-hole, gas mini-permeameter probe
The distal end of a basic tube element including a stopper device with an expandable plug is positioned in a pre-drilled hole in a rock face. Rotating a force control wheel threaded on the tube element exerts force on a sleeve that in turn causes the plug component of the stopper means to expand and seal the distal end of the tube in the hole. Gas under known pressure is introduced through the tube element. A thin capillary tube positioned in the tube element connects the distal end of the tube element to means to detect and display pressure changes and data that allow the permeability of the rock to be determined
- …