78 research outputs found

    Utilization of SAGE aerosol profiles in the analysis of Mauna Loa stratospheric lidar data

    Get PDF
    A systematic approach to analyzing lidar data collected at NOAA's Mauna Loa Observatory (MLO) was developed which relies on parameters derived from SAGE satellite extinction profile measurements to verify boundary conditions applied to analysis. The approach also provides a means of assessing the uncertainties associated with the various inputs, so that the accuracy of the analysis of the MLO lidar data is available. The stratosphere during the 1980 to 1981 period was only mildly perturbed and could be easily represented by the SAMII/SAGE background aerosol model. The MLO lidar observations collected during this period provided stratospheric optical depths with uncertainties ranging between 15% and 25%. Uncertainties in the aerosol optical model contribute errors of 3% to 4% in the computed optical depths. Most of the optical depth uncertainty is associated with the calibration assumption in which no marked improvement can be expected

    Laboratory studies of infrared absorption by NO2 and HNO3

    Get PDF
    Data concerning the quantitative absorption in the 11 and 22 micron region by HNO3 were obtained. Results are presented indicating the temperature dependence of these bands of HNO3 vapor. The 21.8 micron absorption bands of HNO3 vapor at 40 C are discussed along with the integrated intensity and line parameters for the 6.2 micron band of NO2

    Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    Get PDF
    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported

    New atlas of IR solar spectra

    Get PDF
    Over 4500 absorption lines have been marked on the spectra and the corresponding line positions tabulated. The associated absorbing telluric or solar species for more than 90% of these lines have been identified and only a fraction of the unidentified lines have peak absorptions greater than a few percent. The high resolution and the low Sun spectra greatly enhance the sensitivity limits for identification of trace constituents

    Infrared measurements in the spring 1987 ozone hole

    Get PDF
    Solar spectra were recorded from Arrival Heights (McMurdo), Antartica, with a FTIR system during the austral spring of 1987. Spectra were recorded on 22 days from September 13 through October 28. The instrument was setup with 2 detectors for simultaneous operation in 2 wavelength regions. Several stratospheric gases have measurable absorptions in these regions including HCl, HNO3, O3, ClONO2, and NO2. The system is equipped with an automatic solar tracking system and records data on tape cartridges. A portable personal computer allows Fourier transforming and initial processing of some of the data. The HNO3 gas column amount shows large variations, but no apparent correlation with stratospheric temperature. The HCl column shows a steady increase from 0.9 x 10 to the 15th power molecules/sq.cm. on September 13 to 1.5 x 10 to the 15th power on October 6. McMurdo moved out of the polar vortex for a few days, and the HCl column jumped to 2.9 x 10 to the 15th power by October 11. Although McMurdo moved back under the vortex, the HCl continued to increase, reaching 3.4 x 10 to the 15th power at the end of the period

    Seasonal variations of CO and HCN in the troposphere measured by solar absorption spectroscopy over Poker Flat, Alaska

    Get PDF
    Tropospheric partial column abundances of CO and HCN have been retrieved from infrared solar spectra observed with a ground-based spectrometer at Poker Flat Alaska (65°N, 147°W) over the time period from 2000 to 2004. From these data we report the transpacific transport induced inter-annual variability of tropospheric CO over Poker Flat. This is the first report of solar infrared data from the Poker Flat station, where the geographical location of the site means that remote sensing measurements are sampling the transport of transpacific air parcels going to Northern America from Eastern Siberia and Asia. The five year time-span of the data also show significant differences in year to year CO and HCN tropospheric column enhancements driven by changes in Siberian/Asian pollution sources

    The determination of HNO3 column amounts from tunable diode laser heterodyne spectrometer spectra taken at Jungfruajoch, Switzerland

    Get PDF
    In May of 1991 a tunable diode laser heterodyne spectrometer built by the National Physical Laboratory was operated at the International Scientific Station of the Jungfraujoch (46.5 deg N, 8.0 deg E, altitude 3.56 km). Nitric acid spectra in the region of 868 wavenumbers were recorded at sunset and sunrise on two separate days at a resolution of 0.0013 wavenumbers with a signal-to-noise ratio of approximately 130:1. A vertical column amount of HNO3 of 1.61 x 10(exp 16) molecules/sq cm was determined using an atmospheric transmission model developed at the University of Denver. The mean of a number of mid-latitude, northern hemisphere profiles was used as the initial profile for the inversion. A comparison of different initial profiles provides information on the sensitivity of the retrieved column amount of 1.61 x 10(exp 16) molecules/sq cm lies within the range of values published in the World Meteorological Organization Report no. 16 (1986), but is considerably larger than the value of (0.99 - 1.29) x 10(exp 16) reported by Rinsland et al. (1991) for June during the period 1986 to 1990

    Quantification of the overall contribution of gene-environment interaction for obesity-related traits

    Get PDF
    The growing sample size of genome-wide association studies has facilitated the discovery of gene-environment interactions (GxE). Here we propose a maximum likelihood method to estimate the contribution of GxE to continuous traits taking into account all interacting environmental variables, without the need to measure any. Extensive simulations demonstrate that our method provides unbiased interaction estimates and excellent coverage. We also offer strategies to distinguish specific GxE from general scale effects. Applying our method to 32 traits in the UK Biobank reveals that while the genetic risk score (GRS) of 376 variants explains 5.2% of body mass index (BMI) variance, GRSxE explains an additional 1.9%. Nevertheless, this interaction holds for any variable with identical correlation to BMI as the GRS, hence may not be GRS-specific. Still, we observe that the global contribution of specific GRSxE to complex traits is substantial for nine obesity-related measures (including leg impedance and trunk fat-free mass).This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.published version, accepted version, submitted versio
    corecore