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Seasonal variations of CO and HCN in the troposphere measured by solar
absorption spectroscopy over Poker Flat, Alaska

Abstract

Tropospheric partial column abundances of CO and HCN have been retrieved from infrared solar spectra
observed with a ground-based spectrometer at Poker Flat Alaska (65°N, 147°W) over the time period from
2000 to 2004. From these data we report the transpacific transport induced inter-annual variability of
tropospheric CO over Poker Flat. This is the first report of solar infrared data from the Poker Flat station,
where the geographical location of the site means that remote sensing measurements are sampling the
transport of transpacific air parcels going to Northern America from Eastern Siberia and Asia. The five
year time-span of the data also show significant differences in year to year CO and HCN tropospheric
column enhancements driven by changes in Siberian/Asian pollution sources.
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Seasonal variations of CO and HCN in the troposphere measured by
solar absorption spectroscopy over Poker Flat, Alaska
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[1] Tropospheric partial column abundances of CO and
HCN have been retrieved from infrared solar spectra
observed with a ground-based spectrometer at Poker Flat
Alaska (65°N, 147°W) over the time period from 2000 to
2004. From these data we report the transpacific transport
induced inter-annual variability of tropospheric CO over
Poker Flat. This is the first report of solar infrared data from
the Poker Flat station, where the geographical location of
the site means that remote sensing measurements are
sampling the transport of transpacific air parcels going to
Northern America from Eastern Siberia and Asia. The
five year time-span of the data also show significant
differences in year to year CO and HCN tropospheric
column enhancements driven by changes in Siberian/
Asian pollution sources. Citation: Kasai, Y. J., A. Kagawa,
N. Jones, A. Fujiwara, K. Seki, Y. Murayama, and F. Murcray
(2005), Seasonal variations of CO and HCN in the troposphere
measured by solar absorption spectroscopy over Poker Flat,
Alaska, Geophys. Res. Lett., 32, L19812, doi:10.1029/
2005GL022826.

1. Introduction

[2] Carbon monoxide (CO) is one of the most important
molecules in the troposphere. The reaction of CO with the
hydroxyl radical OH is the primary sink for tropospheric
OH, which controls the oxidizing capacity of trace gases in
the troposphere [e.g., Logan et al., 1981]. The distribution
of CO is interesting not only for it’s role in tropospheric
chemistry but also as a primary and secondary determinant
of air quality via its use as an atmospheric tracer with a
relatively long life-time, that is, as an indicator of how
transport redistributes pollutants. It is therefore important to
understand the driving force behind locally observed CO
variations.

[3] Poker Flat is a good site to detect polluted air trans-
ported because of its’ relatively clean background tropo-
spheric air and isolation from most local industrial activity.
Except for occasional local burn-offs, there are no signifi-
cant regional sources of pollution. Poker Flat is the entrance
for transpacific transport of air parcels going to Northern
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America from Eastern Siberia and Asia, and biomass
burning affected air masses that have been transported from
Siberia [Jaffe et al., 2004].

[4] The Siberian region holds one of the largest pools of
terrestrial carbon. Siberia is also located where some of the
largest temperature increases are expected to occur under
current climate change scenarios [Soja et al., 2004]. It is
therefore interesting to understand the behavior and impact
of polluted air due to Siberian fires on the Alaska region,
where the background air is relatively clean.

[s] CO and hydrogen cyanide (HCN) are common atmo-
spheric tracers of biomass burning. The lifetime of CO in
the Arctic is estimated to be 15 days in summer and more
than 1 year in winter in the Northern polar region [Holloway
et al., 2000]. Recently, there have been many reports of CO
generated by fossil fuel emissions, fire, or biomass burning
plumes being transported from East Asian-Siberia region to
the continental US [Kar et al., 2004; de Gouw et al., 2004;
Jaffe et al., 2004; Heald et al., 2003; Yurganov et al., 2004,
2005]. Ocean uptake has been hypothesized as the dominant
sink of HCN [Li et al., 2003; Singh et al., 2003]. The
residence time of HCN is estimated to be 63 months due to
the OH reaction, and 5.3 months due to the ocean sink
[Singh et al., 2003], therefore, HCN is known to be a good
tracer of the remote transport of biomass burning polluted
air. A number of ground and space based observation of its
total atmospheric column have been made [for example,
Zhao et al., 2002].

[6] The purpose of this paper is to report that the seasonal
variation of tropospheric CO over Poker Flat, Alaska, is
qualitatively explained by long-range transport of air
masses, in combination with forest fire activity from the
Asian-East Siberian region.

2. CO Seasonal Variations and Correlation of
CO With HCN

[7] The spectrometer in this experiment is located at the
Poker Flat Research Range (PFRR: Altitude 0.61 km;
latitude 65.11°N; longitude 147.42°W) of the Geophysical
Institute at the University of Alaska Fairbanks (GI/UAF).
The solar absorption spectra have been recorded with a high
spectral resolution Fourier Transform Infrared (FTIR) spec-
trometer (Bruker 120HR, 0.0019 c¢cm™' resolution) from
February 2000 to June 2004. The reported tropospheric
partial columns were obtained using the software SFIT2
v3.8 [Pougatchev and Rinsland, 1995; Rinsland et al.,
1998], which retrieves the vertical profiles of atmospheric
constituents using Rodger’s Optimal Estimation Method
(OEM) [Rodgers, 2000]. The CO and HCN absorption lines
and the parameterization of the CO and HCN state vector
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Figure 1. a) Seasonal variation of the CO tropospheric
partial column from the ground to 10 km in 2000—-2004.
b) Correlation between HCN (1—-10 km) and CO (4—10 km)
in the free troposphere. See the text for details. ¢) Partial
column averaging kernels for CO (4—10 km) and HCN (1—
10 km).

elements employed in this retrieval study are similar to
those used in previous work by Rinsland et al. [2002] and
Zhao et al. [2002]. The HITRANZ2Kk line list was used for all
spectroscopic lines. Temperature and water vapor profiles
were obtained from daily 1500 hour National Centers for
Environmental Prediction (NCEP) measurements. Temper-
ature was smoothly connected to the daily UK Meteorolog-
ical Office (UKMO) data for 30—50 km, and CIRA86 data
above 50 km.

[8] Figure la displays the seasonal variation of CO
tropospheric column amount over Poker Flat from 2000 to
2004, with April maximum and July minimum, with the
exception of 2003. As the purpose of this paper is to discern
the behavior of tropospheric CO at Poker Flat, the altitude
profiles have been processed for the 1—10 km region. The
10 km limit was selected to correspond to the average
altitude of the tropopause (by temperature) above the
station. The precision of the CO partial columns are
estimated as 2% (1-10 km), and 4% (4—10 km), respec-
tively, which includes error terms for spectral noise, a priori
error, and temperature uncertainty. Details of the error
budget including systematic errors is described fully in
[Rinsland et al., 2000].

[o] Holloway et al. [2000] compared the modeled CO
with measured data at 6 arctic sites including Barrow,
Alaska, (71.19°N, 156.36°W), and reported on the seasonal
variations of CO and its components in Alaska. Their
modeled seasonal variation is qualitatively consistent with
our observation. They showed that the main contribution to
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this seasonal variation is not caused by methane oxidation
chemistry (less than 10 percent), but rather transport of air
masses affected by fossil fuel and biomass burning. Allen et
al. [1996] also supports this view. More recently, Yurganov
et al. [2004, 2005] reported anomalous CO column
enhancements in 1998, 2002 and 2003 above background
levels from a number of Northern Hemisphere sites, includ-
ing global CO MOPITT data, that was ascribed to forest
fires in Russia.

[10] If the seasonal variation of CO were due to transport
from Asia and Siberia via biomass burning emissions and
residential coal burning, one would expect that the correla-
tion of CO and HCN would also be linked to its seasonal
variation. Figure 1b are scatter plots of CO and HCN from
2000 to 2004 in the free troposphere (defined here as the
altitude range from 4 to 10 km for CO and 1-10 km for
HCN).

[11] The different altitude ranges were chosen for the
two gases so that the relative atmospheric sampling of
these species was similar based on their averaging kernel
functions. Thus the abundances of CO and HCN were
weighed to the free troposphere. The averaging kernel
functions for CO (4—10 km) and HCN (1-10 km) are
shown in Figure Ic.

[12] The correlations in Figure 1b are classified bimonthly,
represented by symbol color; blue for February—April, red
for May—June, green for July—August, and yellow for
September—October. Years are shown by symbol shapes;
cross 2000, diamond 2001, triangle 2002, and square 2003,
and ‘x’ 2004. The correlations are calculated for each two-
monthly period between CO and HCN (the correlation
coefficients, detailed below, range from r = 0.69 to r =
0.05, showing a seasonal dependence). The amounts of the
HCN tropospheric columns (2-5 x 10'° molecules cm™?)
are reasonably consistent with the measurements over
Japan (3-6 x 10'° molecules cm ) from January to April
[Singh et al., 2003].

[13] The slope of CO-HCN scatter plots tends to increase
during the course of the season, that is, the HCN amount
relative to the CO amount increases from spring to autumn.
The slope values for February—April, May—June, July—
August, and September—October are 0.3 (correlation coef-
ficient r = 0.05), 2.8 (r = 0.44), 6.2 (r = 0.69), and 7.3 (r =
0.53) respectively.

[14] The presence of fossil fuel or biomass burning
emissions in the transported air parcel is suggested for the
following three reasons. First, the value of the spring-time
slope (2.8 in May—June) is consistent with measurements in
the free troposphere over the Pacific ocean in 2001 bySingh
et al. [2003], who also suggest that this air-mass originated
from East Siberia and Asian sources.

[15] Second, the HCN/CO slope increases from spring to
summer. The slope for July—August (6.2) is larger than that
of Feb.—April (0.3). In the summer the contribution from
transported CO relative to the total CO distribution
decreases as the lifetime of CO over continental source
regions drops to about 15 days. If the origin of the CO air
during the spring maximum is caused by transport of the
pollutant air, the slope should be increasing from March
through to August as shown in Figure 1b.

[16] Third, the correlation of HCN/CO is higher in
summer than in spring. The correlation coefficients are r =
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Figure 2. An example of the backward trajectories over
7 days on nine isentropes from 100—900 hPa, starting at
Poker Flat, Alaska at 23:54 UTC on 21 September 2002
when the observed CO was significantly enhanced.

0.69 and r = 0.05 in summer (July—August) and spring
(February—April), respectively. The tropospheric column
amounts of CO are also more scattered about the seasonal
trend in summer than in spring.

[17] A likely explanation for the seasonal variation of CO
profiles is the transport of fossil fuel emissions, fire, or
biomass burning plumes being transported over the Poker
Flat site from elsewhere. In the next section we will check
this scenario using meteorological data.

3. Backward Trajectory Analysis

[18] Backward trajectory analysis is used to document the
histories of air parcels observed by the FTIR system at
Poker Flat. We used the trajectory calculation tool devel-
oped by Y. Tomikawa and K. Sato at National Institute of
Polar Research, Japan [Yamanouchi et al., 2005]. Our
trajectories utilized global gridded meteorological analysis
prepared by the European Centre for Medium-Range
Weather Forecasts (ECMWF). 7-day backward trajectories
were calculated using a kinematic model, i.e., employing
horizontal and vertical wind components from the ECMWF
data. Additional details about the trajectory model are given
in Yamanouchi et al. [2005]. The 9 isobaric vertical levels
were used from 900 to 100 hPa, interpolated onto a 2.5° by
2.5° latitude-longitude horizontal grid. The trajectories were
calculated with 9 clusters, the center point at Poker Flat with
the surrounding 8 points at each vertical level. Since the
life-time of middle-upper tropospheric CO and related
pollutant molecules are relatively long (>15 days), this
7-day period generally provides sufficient information about
long-range transport of the air masses without resorting to
an even longer period whose results would be subject to
greater uncertainty.

[19] Figure 2 shows an example of backward trajectories
over 7 days on nine isentropes in the range of 100—900 hPa,
starting at Poker Flat, Alaska at 23:54 UTC on 21 Septem-
ber 2002 when the observed CO was significantly en-
hanced. The trans-Pacific transport to Poker Flat, Alaska
from the Asian region is clearly shown. This air mass
passed over the area burned in Siberia in 2002 as shown
by Soja et al. [2004].

[20] The enhanced CO column on 21 September 2002
(Figure 1) was likely to have been affected by Siberian
biomass burning, which is consistent with the evidence of
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increased HCN on the same day. It should also be noted that
large wild fires were reported in the eastern Asian-Russian
region during 18—27 Sept. 2002 [Sukhinin et al., 2004]. It is
also note that this timeframe is relatively unusual as it
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Figure 3. a) The seasonal variation of the percentage of
backward trajectories from Poker Flat which passes through
Asia (red), East Siberia (green) and Pacific Ocean only
(blue) for the 2002 year. X-axis is the month in 2002. b) A
comparison of the seasonal variation of the origin of the air
parcel with that of tropospheric CO in 2002. The seasonal
variation of this air parcel is calculated from Figure 3a,
using the equation (Ngsigeria + Nasia)/Npaciric, where
Narea represents the number of trajectories passing over
AREA. The y-axis is the tropospheric CO daily mean, while
the x-axis is the month in 2002. c) Forest fire activity
dynamics in the Asian-Russian region in 2002. The number
of biomass burning events in the Asian-Russian region in
2002 has a triple peak, i.e., from the end of April to the
middle of May, the middle of August, and the end of
October [Sukhinen et al., 2004].
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coincides with the peak in springtime biomass burning in
the southern hemisphere.

4. Statistical Characteristics of Trajectory Results

[21] Figure 3a illustrates the number of trajectories, as a
monthly percentage, which had originated from the Asian,
East-Siberian, and Pacific Ocean regions in 2002. For the
trajectories through Asia, a seasonal trend is seen with a
maximum in February and a minimum in June—April. For
the Siberian case, however, a season maximum occurs later
in March, with a minimum from May to August. The
number of trajectories passing through the Pacific Ocean
(a non-polluted area) increases from spring to summer.

[22] Figure 3b is a comparison of the seasonal variation
of air parcel origin with that of tropospheric CO column
amounts in 2002. The solid line in Figure 3b shows the ratio
(Nsigeria + Nasia)/Npaciric, Where Naggarepresents the
number of trajectories passing over AREA. The regular CO
seasonal trend of a spring maximum and summer minimum
is reasonably consistent with the long-range transport from
the Asia-Siberian region as suggested by the (Nsiggria +
Nasia)/Npaciric  trajectory  source ratio. In addition,
3 anomalously high CO peaks can be seen in mid May, late
July-early August, and late September in the CO seasonal
trend (Figure 3b). Figure 3c is the forest fire activity
dynamics in the Asian-Russian region in 2002 [Sukhinin
et al., 2004]. One can recognize the more frequent forest
fire events and larger area of burned land in the eastern
Russian region, and in particular, three periods of larger fire
activity in late April-mid May, mid August, and late
September (Figure 3c), consistent with the Poker Flat CO
enhancements (Figure 3b).

[23] Thus the seasonal variation of the tropospheric CO
column amounts in 2002 is qualitatively explained by long-
range transport of CO from the Asian-East Siberian region
in combination with forest fire activity in the Asian-Russian
region.

5. Summary

[24] The seasonal variation of the tropospheric column
amount of CO was observed over Poker Flat, Alaska, with
maxima in April and minima in July. CO and HCN amounts
were well correlated when they are classified bimonthly.
The seasonal behavior and variation of the HCN/CO ratio
implies that the measured air parcels underwent similar
dilution processes. The ratio in spring was consistent with
past measurements over the Pacific Ocean. A trajectory
analysis indicated that the trans-Pacific transport of air from
Eastern Siberia and Asia to Poker Flat, Alaska, is consistent
with the observed seasonal variation and scatter of CO over
Poker Flat in 2002. Incorporating the trajectory analysis
results, it is suggested that transport processes are the
primary driver of the CO season dependence, and that the
observed sporadic CO enhancements are due to superim-
posed Asian/Siberian forest fires.

[25] Acknowledgments. We thank Jorg Trentmann (Johannes Guten-
berg-University Mainz) for valuable discussions. We would like to thank
Kouhei Mizutani and Toshikazu Itabe (NICT) for installing the FTS at
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