61 research outputs found

    Candidates Cell Sources to Regenerate Alveolar Bone from Oral Tissue

    Get PDF
    Most of the cases of dental implant surgery, especially the bone defect extensively, are essential for alveolar ridge augmentation. As known as cell therapy exerts valuable effects on bone regeneration, numerous reports using various cells from body to regenerate bone have been published, including clinical reports. Mesenchymal cells that have osteogenic activity and have potential to be harvested from intra oral site might be a candidate cells to regenerate alveolar bone, even dentists have not been harvested the cells outside of mouth. This paper presents a summary of somatic cells in edentulous tissues which could subserve alveolar bone regeneration. The candidate tissues that might have differentiation potential as mesenchymal cells for bone regeneration are alveolar bone chip, bone marrow from alveolar bone, periosteal tissue, and gingival tissue. Understanding their phenotype consecutively will provide a rational approach for alveolar ridge augmentation

    STAT1/3 signaling suppresses axon degeneration and neuronal cell death through regulation of NAD+-biosynthetic and consuming enzymes

    Get PDF
    Nicotinamide adenine dinucleotide (NAD)+-biosynthetic and consuming enzymes are involved in various intracellular events through the regulation of NAD+ metabolism. Recently, it has become clear that alterations in the expression of NAD+-biosynthetic and consuming enzymes contribute to the axonal stability of neurons. We explored soluble bioactive factor(s) that alter the expression of NAD+-metabolizing enzymes and found that cytokine interferon (IFN)-γ increased the expression of nicotinamide nucleotide adenylyltransferase 2 (NMNAT2), an NAD+-biosynthetic enzyme. IFN-γ activated signal transducers and activators of transcription 1 and 3 (STAT1/3) followed by c-Jun N-terminal kinase (JNK) suppression. As a result, STAT1/3 increased the expression of NMNAT2 at both mRNA and protein levels in a dose- and time-dependent manner and, at the same time, suppressed activation of sterile alpha and Toll/interleukin receptor motif-containing 1 (SARM1), an NAD+-consuming enzyme, and increased intracellular NAD+ levels. We examined the protective effect of STAT1/3 signaling against vincristine-mediated cell injury as a model of chemotherapy-induced peripheral neuropathy (CIPN), in which axonal degeneration is involved in disease progression. We found that IFN-γ-mediated STAT1/3 activation inhibited vincristine-induced downregulation of NMNAT2 and upregulation of SARM1 phosphorylation, resulting in modest suppression of subsequent neurite degradation and cell death. These results indicate that STAT1/3 signaling induces NMNAT2 expression while simultaneously suppressing SARM1 phosphorylation, and that both these actions contribute to suppression of axonal degeneration and cell death

    Molecular mechanism of cerebral edema improvement via IL-1RA released from the stroke-unaffected hindlimb by treadmill exercise after cerebral infarction in rats

    Full text link
    Cerebral edema following cerebral infarction can be severe and directly affect mortality and mobility. Exercise therapy after cerebral infarction is an effective therapeutic approach; however, the molecular mechanism remains unclear. Myokines such as interleukin-1 receptor antagonist (IL-1RA) are released during skeletal muscle contraction with effects on other organs. We hypothesized that myokine release during exercise might improve brain edema and confirmed the hypothesis using transient middle cerebral artery occlusion (tMCAO) model rats. Rats subjected to tMCAO were divided according to the severity of illness and further assigned to exercise and non-exercise groups. Treadmill exercises were performed at a speed of 2–8 m/min for 10 min from 1–6 days post-reperfusion after tMCAO. Exercise significantly reduced edema and neurological deficits in severely ill rats, with a reduction in aquaporin-4 (AQP4) expression in the ischemic core and increased blood IL-1RA release from the stroke-unaffected hindlimb muscle after tMCAO. Administration of IL-1RA into the lateral ventricles significantly reduced edema and AQP4 expression in the ischemic core. In conclusion, treadmill exercise performed in the early phase of stroke onset alleviated the decrease in blood IL-1RA following ischemic stroke. IL-1RA administration decreased astrocytic AQP4 expression in the ischemic core, suppressing brain edema.Gono R., Sugimoto K., Yang C., et al. Molecular mechanism of cerebral edema improvement via IL-1RA released from the stroke-unaffected hindlimb by treadmill exercise after cerebral infarction in rats. Journal of Cerebral Blood Flow and Metabolism, 43(5), 812-827. © 2023 SAGE Publishing. DOI: 10.1177/0271678X231151569

    Postoperative Radiographic Early-Onset Adjacent Segment Degeneration after Single-Level L4–L5 Posterior Lumbar Interbody Fusion in Patients without Preoperative Severe Sagittal Spinal Imbalance

    Get PDF
    Study Design Retrospective study. Purpose To investigate the relationship between preoperative total spinal sagittal alignment and the early onset of adjacent segment degeneration (ASD) after single-level posterior lumbar interbody fusion (PLIF) in patients with normal sagittal spinal alignment. Overview of Literature Postoperative early-onset ASD is one of the complications after L4–L5 PLIF, a common surgical procedure for lumbar degenerative disease in patents without severe sagittal imbalance. A better understanding of the preoperative characteristics of total spinal sagittal alignment associated with early-onset ASD could help prevent the condition. Methods The study included 70 consecutive patients diagnosed with lumbar degenerative disease who underwent single-level L4–L5 PLIF between 2011 and 2015. They were divided into two groups based on the radiographic progression of L3–L4 degeneration after 1-year follow-up: the ASD and the non-ASD (NASD) group. The following radiographic parameters were preoperatively and postoperatively measured: sagittal vertebral axis (SVA), thoracic kyphosis (TK), lumbar lordosis, pelvic tilt, and pelvic incidence (PI). Results Eight of the 70 patients (11%) experienced ASD after PLIF (three males and five females; age, 64.4±7.7 years). The NASD group comprised 20 males and 42 females (age, 67.7±9.3 years). Six patients of the ASD group showed decreased L3–L4 disc height, one had L3–L4 local kyphosis, and one showed both changes. Preoperative SVA, PI, and TK were significantly smaller in the ASD group than in the NASD group (p <0.05). Conclusions A preoperative small SVA and TK with small PI were the characteristic alignments for the risk of early-onset ASD in patients without preoperative severe sagittal spinal imbalance undergoing L4–L5 single-level PLIF

    Prevention of hypoglycemia by intermittent-scanning continuous glucose monitoring device combined with structured education in patients with type 1 diabetes mellitus : A randomized, crossover trial

    Get PDF
    Aims: We conducted a randomized, crossover trial to compare intermittent-scanning continuous glucose monitoring (isCGM) device with structured education (Intervention) to self-monitoring of blood glucose (SMBG) (Control) in the reduction of time below range. Methods: This crossover trial involved 104 adults with type 1 diabetes mellitus (T1DM) using multiple daily injections. Participants were randomly allocated to either sequence Intervention/Control or sequence Control/Intervention. During the Intervention period which lasted 84 days, participants used the first-generation FreeStyle Libre (Abbott Diabetes Care, Alameda, CA, USA) and received structured education on how to prevent hypoglycemia based on the trend arrow and by frequent sensor scanning (≥10 times a day). Confirmatory SMBG was conducted before dosing insulin. The Control period lasted 84 days. The primary endpoint was the decrease in the time below range (TBR; <70 mg/dL). Results: The time below range was significantly reduced in the Intervention arm compared to the Control arm (2.42 ± 1.68 h/day [10.1 %±7.0 %] vs 3.10 ± 2.28 h/day [12.9 %±9.5 %], P = 0.012). The ratio of high-risk participants with low blood glucose index >5 was significantly reduced (8.6 % vs 23.7 %, P < 0.001). Conclusions: The use of isCGM combined with structured education significantly reduced the time below range in patients with T1DM

    Candidates Cell Sources to Regenerate Alveolar Bone from Oral Tissue

    Get PDF
    Most of the cases of dental implant surgery, especially the bone defect extensively, are essential for alveolar ridge augmentation. As known as cell therapy exerts valuable effects on bone regeneration, numerous reports using various cells from body to regenerate bone have been published, including clinical reports. Mesenchymal cells that have osteogenic activity and have potential to be harvested from intra oral site might be a candidate cells to regenerate alveolar bone, even dentists have not been harvested the cells outside of mouth. This paper presents a summary of somatic cells in edentulous tissues which could subserve alveolar bone regeneration. The candidate tissues that might have differentiation potential as mesenchymal cells for bone regeneration are alveolar bone chip, bone marrow from alveolar bone, periosteal tissue, and gingival tissue. Understanding their phenotype consecutively will provide a rational approach for alveolar ridge augmentation
    corecore