3 research outputs found

    Pressure-induced reconstructive phase transition in Cd3As2

    Get PDF
    Cadmium arsenide Cd3As2 hosts massless Dirac electrons in its ambient-conditions tetragonal phase. We report X-ray diffraction and electrical resistivity measurements of Cd3As2 upon cycling pressure beyond the critical pressure of the tetragonal phase and back to ambient conditions. We find that at room temperature the transition between the low- and high-pressure phases results in large microstrain and reduced crystallite size both on rising and falling pressure. This leads to non-reversible electronic properties including self-doping associated with defects and a reduction of the electron mobility by an order of magnitude due to increased scattering. Our study indicates that the structural transformation is sluggish and shows a sizable hysteresis of over 1 GPa. Therefore, we conclude that the transition is first-order reconstructive, with chemical bonds being broken and rearranged in the high-pressure phase. Using the diffraction measurements we demonstrate that annealing at ~200 deg. C greatly improves the crystallinity of the high-pressure phase. We show that its Bragg peaks can be indexed as a primitive orthorhombic lattice with a_HP = 8.68 Ã…, b_HP = 17.15 Ã… and c_HP = 18.58 Ã…. The diffraction study indicates that during the structural transformation a new phase with another primitive orthorhombic structure may be also stabilized by deviatoric stress, providing an additional venue for tuning the unconventional electronic states in Cd3As2
    corecore