76 research outputs found

    Cure of Chronic Viral Infection and Virus-Induced Type 1 Diabetes by Neutralizing Antibodies

    Get PDF
    The use of neutralizing antibodies is one of the most successful methods to interfere with receptor–ligand interactions in vivo. In particular blockade of soluble inflammatory mediators or their corresponding cellular receptors was proven an effective way to regulate inflammation and/or prevent its negative consequences. However, one problem that comes along with an effective neutralization of inflammatory mediators is the general systemic immunomodulatory effect. It is, therefore, important to design a treatment regimen in a way to strike at the right place and at the right time in order to achieve maximal effects with minimal duration of immunosuppression or hyperactivation. In this review, we reflect on two examples of how short time administration of such neutralizing antibodies can block two distinct inflammatory consequences of viral infection. First, we review recent findings that blockade of IL-10/IL-10R interaction can resolve chronic viral infection and second, we reflect on how neutralization of the chemokine CXCL10 can abrogate virus-induced type 1 diabetes

    Design and synthesis of new low band gap organic semiconductors for photovoltaic applications

    No full text
    Donor-acceptor (D-A) conjugated polymers have attracted a good deal of attention in recent years. In D-A systems, the introduction of electron withdrawing groups reduces E-g by lowering the LUMO levels whereas, the introduction of electron donating groups reduces E-g by raising the HOMO levels. Also, conjugated polymers with desired HOMO and LUMO energy levels could be obtained by the proper selection of donor and acceptor units. Because of this reason, D-A conjugated polymers are emerging as promising materials particularly for polymer light emitting diodes (PLEDs) and polymer solar cells (PSCs). We report the design and synthesis of four new narrow band gap donor-acceptor (D-A) conjugated polymers, PTCNN, PTCNF, PTCNV and PTCNO, containing electron donating 3,4-didodecyloxythiophene and electron accepting cyanovinylene units. The effects of further addition of electron donating and electron withdrawing groups to the repeating unit of a D-A conjugated polymer (PTCNN) on its optical and electrochemical properties are discussed. The studies revealed that the nature of D and A units as well as the extent of alternate D-A structure influences the optical and the electrochemical properties of the polymers. All the polymers are thermally stable up to a temperature of 300 degrees C under nitrogen atmosphere. The electrochemical studies revealed that the polymers possess low-lying HOMO energy levels and low-lying LUMO energy levels. In the UV-Vis absorption study, the polymer films displayed broad absorption in the wavelength region of 400-700 nm. The polymers exhibited low optical band gaps in the range 1.70 - 1.77 eV

    New low band gap 2-(4-(trifluoromethyl)phenyl)-1H-benzod]imidazole and benzo1,2-c; 4,5-c `]bis1,2,5]thiadiazole based conjugated polymers for organic photovoltaics

    No full text
    Two new low band gap D-A structured conjugated polymers, PBDTTBI and PBDTBBT, based on 2-(4-(trifluoromethyl)phenyl)-1H-benzod]imidazole and benzo1,2-c; 4,5-c']bis1,2,5]thiadiazole acceptor units with benzo1,2-b; 3,4-b']dithiophene as a donor unit have been designed and synthesized via a Stille coupling reaction. The incorporation of the benzo1,2-c; 4,5-c']bis1,2,5]thiadiazole unit into PBDTBBT has significantly altered the optical and electrochemical properties of the polymer. The optical band gap estimated from the onset absorption edge is similar to 1.88 eV and similar to 1.1 eV, respectively for PBDTTBI and PBDTBBT. It is observed that PBDTBBT exhibited a deeper HOMO energy level (similar to 4.06 eV) with strong intramolecular charge transfer interactions. Bulk heterojunction solar cells fabricated with a configuration of ITO/PEDOT: PSS/PBDTBBT: PC71BM/Al exhibited a best power conversion efficiency of 0.67%, with a short circuit current density of 4.9 mA cm(-2), an open-circuit voltage of 0.54 V and a fill factor of 25%

    Experimental investigation of charge transfer, charge extraction, and charge carrier concentration in P3HT:PBD-DT-DPP:PC70BM ternary blend photovoltaics

    No full text
    A sensitizer consisting of D-A structured polymer (PBD-DT-DPP) is assessed with P3HT:PC70BM solar cell. This polymer possesses a narrow energy band gap, which complements in absorption of P3HT:PC70BM binary blend. Use of PBD-DT-DPP as a sensitizer in the ternary blend OPV is reported earlier, which showed enhanced power conversion efficiency (PCE) in the conventional device structure. In this work, charge transfer and charge transport properties of the ternary blend (inverted device) for its improved performance are discussed in detail. Ternary blend system demonstrated an improved device performance (similar to 3.35%) as compared with the binary of P3HT:PC70BM devices (similar to 2.58%). Ternary blend devices showed enhanced short circuit current density (J(sc)) of similar to 4 mA/cm(2) relative to P3HT:PC70BM. To understand the reason for the decrease in fill factor (FF), mobility analysis using charge extraction with increasing linear voltage (CELIV) measurements were carried out. However, there is not much change in the open circuit voltage (V-oc). Results indicate increased bimolecular recombination for the ternary blend, suggesting increased disorder in the morphology of ternary blend films. Time-resolved microwave conductivity (TRMC) measurement was utilized to understand the photoconductance properties of the ternary blend films. Interestingly, TRMC results showed binary PBD-DT-DPP:P3HT and PBD-DT-DPP:PC70BM mixtures possess similar transient photo-conductance to that of P3HT:PC70BM. Further, photoluminescence (PL) measurements were carried out to probe the charge transfer process in the blend systems. Capacitance-voltage results showed enhanced carrier concentration in ternary system. The detailed analysis showed that ternary system helps in improving the charge generation and charge transport and hence improved device performance

    Influence of thiophene spacer on conjugated polymer for organic photovoltaics

    No full text
    A new D-A structured conjugated polymers PBDTT-TPD and PBDTT-TTPDT based on electron-rich benzo1,2-b: 4,5-b'] dithiophene (BDT) conjugated with alkylthiophene side chains with an electron-deficient 1,3-dibromo-5-(2-octyl)-4H-thieno3,4-c]pyrrole-4,6(5H)-dione (TPD) and thiophene as a spacer were designed and synthesized via Stille coupling reaction. The polymer exhibits a broad UV-Visible absorption spectra. The HOMO and LUMO energy levels of PBDTT-TPD and PBDTT-TTPDT are -5.22 eV, -3.22 eV and -5.72 eV, -3.55 eV respectively. The PCEs of PBDTT-TPD was found to be 1.9% efficiency
    corecore