22 research outputs found

    An evidence assessment tool for ecosystem services and conservation studies

    Get PDF
    Reliability of scientific findings is important, especially if they directly impact decision making, such as in environmental management. In the 1990s, assessments of reliability in the medical field resulted in the development of evidence-based practice. Ten years later, evidence-based practice was translated into conservation, but so far no guidelines exist on how to assess the evidence of individual studies. Assessing the evidence of individual studies is essential to appropriately identify and synthesize the confidence in research findings. We develop a tool to assess the strength of evidence of ecosystem services and conservation studies. This tool consists of (1) a hierarchy of evidence, based on the experimental design of studies and (2) a critical-appraisal checklist that identifies the quality of research implementation. The application is illustrated with 13 examples and we suggest further steps to move towards more evidence-based environmental management

    Abandoning grassland management negatively influences plant but not bird or insect biodiversity in Europe

    Get PDF
    Grasslands are globally distributed and naturally occurring; however, in Europe, most grasslands are anthropogenically created or altered by livestock grazing or mowing. Low-intensity use and management have led to species-rich communities in European grasslands. The intensification of crop production and livestock farming with stabling throughout the year has led to an abandonment of grasslands that are no longer economically profitable. In this study, we looked at the influence of grassland abandonment on biodiversity. We hypothesized that abandonment of grasslands decreases the overall biodiversity, but has different effects depending on the focal taxonomic group (i.e., vascular plants, insects, or birds). We also hypothesized that the type of management before abandonment, the type of grassland, and the time after abandonment would influence grassland biodiversity. We conducted a Web of Science search, with pre-defined terms, to find articles that compared biodiversity of managed and abandoned grasslands in Europe. We screened the articles and included 39 studies in a subsequent meta-analysis. We found that overall biodiversity was reduced after abandonment; however, the biodiversity reduction in the grasslands differed among taxonomic groups. Plant species diversity was significantly lower after abandonment (plant summary effect size: −0.25 [−0.34; −0.16]), whereas the diversity of insects and birds showed no significant trend, but a visual trend toward an increase. None of the other environmental variables (type of management, type of grassland, or the time after abandonment) had a significant influence on the biodiversity of the grasslands. We conclude that maintaining grassland management is crucial to support biodiversity conservation in European grasslands

    Reducing publication delay to improve the efficiency and impact of conservation science.

    Get PDF
    Evidence-based decision-making is most effective with comprehensive access to scientific studies. If studies face significant publication delays or barriers, the useful information they contain may not reach decision-makers in a timely manner. This represents a potential problem for mission-oriented disciplines where access to the latest data is required to ensure effective actions are undertaken. We sought to analyse the severity of publication delay in conservation science-a field that requires urgent action to prevent the loss of biodiversity. We used the Conservation Evidence database to assess the length of publication delay (time from finishing data collection to publication) in the literature that tests the effectiveness of conservation interventions. From 7,447 peer-reviewed and non-peer-reviewed studies of conservation interventions published over eleven decades, we find that the raw mean publication delay was 3.2 years (±2SD = 0.1) and varied by conservation subject. A significantly shorter delay was observed for studies focused on Bee Conservation, Sustainable Aquaculture, Management of Captive Animals, Amphibian Conservation, and Control of Freshwater Invasive Species (Estimated Marginal Mean range from 1.4-1.9 years). Publication delay was significantly shorter for the non-peer-reviewed literature (Estimated Marginal Mean delay of 1.9 years ± 0.2) compared to the peer-reviewed literature (i.e., scientific journals; Estimated Marginal Mean delay of 3.0 years ± 0.1). We found publication delay has significantly increased over time (an increase of ~1.2 years from 1912 (1.4 years ± 0.2) to 2020 (2.6 years ± 0.1)), but this change was much weaker and non-significant post-2000s; we found no evidence for any decline. There was also no evidence that studies on more threatened species were subject to a shorter delay-indeed, the contrary was true for mammals, and to a lesser extent for birds. We suggest a range of possible ways in which scientists, funders, publishers, and practitioners can work together to reduce delays at each stage of the publication process

    The Adaptability of Full Cast Crown in Preclinical Practice

    Get PDF
    A study was made to evaluate the adaptability of full cast crowns in preclinical practice of the fifth year students at Matsumoto Dental College in 1984. Gap space between the inner surface of the full cast crown and the surface of the abutment tooth was investigated with silicon material. The results were as follows: 1) The adaptability of crowns was better at the mesial surface than at the distal surface, and better at the lingual surface than at the buccal surface. 2) The adaptability of crowns was better at the axial walls, especialy in the middle, than in the cervical margin. 3) At the occulusal surface, the adaptability of crowns was worst

    The hierarchy-of-hypotheses approach: A synthesis method for enhancing theory development in ecology and evolution

    Get PDF
    13 páginas.- 4 figuras.- referencias.- Supplemental material is available at BIOSCI online. https://doi.org/10.1093/biosci/biaa130In the current era of Big Data, existing synthesis tools such as formal meta-analyses are critical means to handle the deluge of information. However, there is a need for complementary tools that help to (a) organize evidence, (b) organize theory, and (c) closely connect evidence to theory. We present the hierarchy-of-hypotheses (HoH) approach to address these issues. In an HoH, hypotheses are conceptually and visually structured in a hierarchically nested way where the lower branches can be directly connected to empirical results. Used for organizing evidence, this tool allows researchers to conceptually connect empirical results derived through diverse approaches and to reveal under which circumstances hypotheses are applicable. Used for organizing theory, it allows researchers to uncover mechanistic components of hypotheses and previously neglected conceptual connections. In the present article, we offer guidance on how to build an HoH, provide examples from population and evolutionary biology and propose terminological clarifications.The workshops were funded by Volkswagen Foundation (Az 92,807 and 94,246). TH, CAA, ME, PG, ADS, and JMJ received funding from German Federal Ministry of Education and Research within the Collaborative Project “Bridging in Biodiversity Science” (grant no. 01LC1501A). ME additionally received funding from the Foundation of German Business, JMJ from the Deutsche Forschungsgemeinschaft (grants no. JE 288/9–1 and JE 288/9–2), and IB from German Federal Ministry of Education and Research (grant no. FKZ 01GP1710). CJL was supported by a grant from The Natural Sciences and Engineering Research Council of Canada and in-kind synthesis support from the US National Center for Ecological Analysis and Synthesis. LGA was supported by the Spanish Ministry of Science, Innovation, and Universities through project no. CGL2014–56,739-R, and RRB received funding from the Brazilian National Council for Scientific and Technological Development (process no. 152,289/2018–6)Peer reviewe

    Are Temperate Canopy Spiders Tree-Species Specific?

    Get PDF
    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood

    Influence of Forest Harvest on Nitrate Concentration in Temperate Streams—A Meta-Analysis

    No full text
    Forest harvest alters natural nutrient cycles, which is reflected in stream water run-off from harvested catchments. Nitrate is an essential nutrient for plant growth, but increased concentrations in rivers, lakes, and oceans have contributed to eutrophication and anoxic conditions. Based on a literature review, we assessed the impact of three different harvest methods—clearcut, patchcut, and selective harvest—on nitrate concentrations in temperate forest streams. In a meta-analysis, the influence of harvest methods and additional environmental variables was analysed. Nitrate concentrations are significantly influenced by harvest methods, forest composition, site altitude, and time passed after the harvesting. The remaining unexplained between-site variability is small compared to the between-site variability explained by the model, indicating the model’s validity. The effect of forest harvest is most pronounced in coniferous and deciduous forests, where clearcuts and patchcuts result in high nitrate run-off three to five years after harvest. Mixed forest plots can compensate for clearcut and patchcut, and do not show a significantly increased nitrate concentration after harvest. Selective harvest at low intensities succeeded in maintaining nitrate levels similar to control or pre-harvest levels in coniferous and mixed forests, and showed a positive but not significant trend in deciduous forests. Coniferous and deciduous monocultures clearly face the problem that nitrate wash-out cannot be minimized by reducing clearcut to patchcut harvest, whereas mixed forests are more suitable to diminish nitrate wash-out in both clearcut and patchcut

    Guild distribution.

    No full text
    <p>Box-plots showing characteristic types of distributions of guilds on different tree species. Abbreviation: Space-web weavers = Spa, tangle weavers = Tan, orb-web weavers = Orb, ambushers = Amb, stalkers = Sta, foliage runners = Fol. Guild composition was uniform on most trees (<i>Quercus</i>, <i>Carpinus</i>, <i>Betula</i> and <i>Picea</i>), while <i>Alnus</i> and <i>Pinus</i> were dominated by tangle and orb-web weavers.</p

    Correspondence analyses showing the distribution of spiders on the fogged trees.

    No full text
    <p>Spider communities on deciduous trees and conifers are clearly separated exhibiting a larger similarity within than between groups (A). For both deciduous (B) and coniferous (C) trees, tree-species-specific patterns were identified. No such pattern was found for the oak trees.</p
    corecore