7 research outputs found

    Multi-omics personalized network analyses highlight progressive disruption of central metabolism associated with COVID-19 severity

    No full text
    The clinical outcome and disease severity in coronavirus disease-2019 (COVID-19) are heterogeneous, and the progression or fatality of the disease cannot be explained by a single factor like age or comorbidities. In this study, we used system-wide network-based system biology analysis using whole blood RNA sequencing, immune-phenotyping by flow cytometry, plasma metabolomics, and single cell-type metabolomics of the monocytes to identify the potential determinants of COVID-19 severity at the personalized and group level. Digital cell quantification and immune-phenotyping of the mononuclear phagocytes indicated a substantial role in coordinating the immune cells that mediate the COVID-19 severity. Stratum-specific and personalized genome-scale metabolic modeling indicated monocarboxylate transporter family genes (e.g., SLC16A6), nucleoside transporter genes (e.g., SLC29A1), and metabolites such as α-ketoglutarate, succinate, malate, and butyrate, could play a crucial role in COVID-19 severity. Metabolic perturbations targeting the central metabolic pathway (TCA-cycle) can be an alternate treatment strategy in severe COVID-19

    Induction of circulating T follicular helper cells and regulatory T cells correlating with HIV-1 gp120 variable loop antibodies by a subtype C prophylactic vaccine tested in a Phase I trial in India.

    Get PDF
    A Phase I HIV-1 vaccine trial sponsored by the International AIDS Vaccine Initiative (IAVI) was conducted in India in 2009 to test a subtype C prophylactic vaccine in a prime-boost regimen comprising of a DNA prime (ADVAX) and MVA (TBC-M4) boost. The trial demonstrated that the regimen was safe and well tolerated and resulted in enhancement of HIV-specific immune responses. Preliminary observations on vaccine-induced immune responses were limited to analysis of neutralizing antibodies and IFN-γ ELISPOT response. The present study involves a more detailed analysis of the nature of the vaccine-induced humoral immune response using specimens that were archived from the volunteers at the time of the trial. Interestingly, we found vaccine induced production of V1/V2 and V3 region-specific antibodies in a significant proportion of vaccinees. Variable region antibody levels correlated directly with the frequency of circulating T follicular helper cells (Tfh) and regulatory T cells (Treg). Our findings provide encouraging evidence to demonstrate the immunogenicity of the tested vaccine. Better insights into vaccine-induced immune responses can aid in informing future design of a successfulHIV-1 vaccine

    Induction and maintenance of bi-functional (IFN-γ + IL-2+ and IL-2+ TNF-α+) T cell responses by DNA prime MVA boosted subtype C prophylactic vaccine tested in a Phase I trial in India.

    Get PDF
    Effective vaccine design relies on accurate knowledge of protection against a pathogen, so as to be able to induce relevant and effective protective responses against it. An ideal Human Immunodeficiency virus (HIV) vaccine should induce humoral as well as cellular immune responses to prevent initial infection of host cells or limit early events of viral dissemination. A Phase I HIV-1 prophylactic vaccine trial sponsored by the International AIDS Vaccine Initiative (IAVI) was conducted in India in 2009.The trial tested a HIV-1 subtype C vaccine in a prime-boost regimen, comprising of a DNA prime (ADVAX) and Modified Vaccine Ankara (MVA) (TBC-M4) boost. The trial reported that the vaccine regimen was safe, well tolerated, and resulted in enhancement of HIV-specific immune responses. However, preliminary immunological studies were limited to vaccine-induced IFN-γ responses against the Env and Gag peptides. The present study is a retrospective study to characterize in detail the nature of the vaccine-induced cell mediated immune responses among volunteers, using Peripheral Blood Mononuclear Cells (PBMC) that were archived during the trial. ELISpot was used to measure IFN-γ responses and polyfunctional T cells were analyzed by intracellular multicolor flow cytometry. It was observed that DNA priming and MVA boosting induced Env and Gag specific bi-functional and multi-functional CD4+ and CD8+ T cells expressing IFN-γ, TNF-α and IL-2. The heterologous prime-boost regimen appeared to be slightly superior to the homologous prime-boost regimen in inducing favorable cell mediated immune responses. These results suggest that an in-depth analysis of vaccine-induced cellular immune response can aid in the identification of correlates of an effective immunogenic response, and inform future design of HIV vaccines

    Deciphering the Role of Mucosal Immune Responses and the Cervicovaginal Microbiome in Resistance to HIV Infection in HIV-Exposed Seronegative (HESN) Women

    No full text
    The female genital tract (FGT) is an important site of human immunodeficiency virus (HIV) infection. Discerning the nature of HIV-specific local immune responses is crucial for identifying correlates of protection in HIV-exposed seronegative (HESN) individuals. The present study involved a comprehensive analysis of soluble immune mediators, secretory immunoglobulins (sIg), natural killer (NK) cells, CXCR5+ CD8+ T cells, T follicular helper (Tfh) cells, and T regulatory cells (Tregs) in the vaginal mucosa as well as the nature and composition of the cervicovaginal microbiome in HESN women. We found significantly elevated antiviral cytokines, soluble immunoglobulins, and increased frequencies of activated NK cells, CXCR5+ CD8+ T cells, and Tfh cells in HESN females compared to HIV-unexposed healthy (UH) women. Analysis of the genital microbiome of HESN women revealed a greater bacterial diversity and increased abundance of Gardnerella spp. in the mucosa. The findings suggest that the female genital tract of HESN females represents a microenvironment equipped with innate immune factors, antiviral mediators, and critical T cell subsets that protect against HIV infection. IMPORTANCE The vast majority of human immunodeficiency virus (HIV) infections across the world occur via the sexual route. The genital tract mucosa is thus the primary site of HIV replication, and discerning the nature of HIV-specific immune responses in this compartment is crucial. The role of the innate immune system at the mucosal level in exposed seronegative individuals and other HIV controllers remains largely unexplored. This understanding can provide valuable insights to improve vaccine design. We investigated mucosal T follicular helper (Tfh) cells, CXCR5+ CD8+ T cells, natural killer (NK) cells subsets, soluble immune markers, and microbiome diversity in HIV-exposed seronegative (HESN) women. We found a significantly higher level of mucosal CXCR5+ CD8+ T cells, CD4+ Tfh cells, activated NK cell subsets, and antiviral immune cell mediators in HESN women. We also found a higher abundance of Gardnerella spp., microbiome dysbiosis, and decreased levels of inflammatory markers to be associated with reduced susceptibility to HIV infection. Our findings indicate that increased distribution of mucosal NK cells, CXCR5+ CD8+ T cells, Tfh cells, and soluble markers in HIV controllers with a highly diverse cervicovaginal microbiome could contribute effectively to protection against HIV infection. Overall, our findings imply that future vaccine design should emphasize inducing these highly functional cell types at the mucosal sites

    Metabolic perturbation associated with COVID-19 disease severity and SARS-CoV-2 replication

    No full text
    Viruses hijack host metabolic pathways for their replicative advantage. In this study, using patient-derived multiomics data and in vitro infection assays, we aimed to understand the role of key metabolic pathways that can regulate severe acute respiratory syndrome coronavirus-2 reproduction and their association with disease severity. We used multiomics platforms (targeted and untargeted proteomics and untargeted metabolomics) on patient samples and cell-line models along with immune phenotyping of metabolite transporters in patient blood cells to understand viral-induced metabolic modulations. We also modulated key metabolic pathways that were identified using multiomics data to regulate the viral reproduction in vitro. Coronavirus disease 2019 disease severity was characterized by increased plasma glucose and mannose levels. Immune phenotyping identified altered expression patterns of carbohydrate transporter, glucose transporter 1, in CD8+ T cells, intermediate and nonclassical monocytes, and amino acid transporter, xCT, in classical, intermediate, and nonclassical monocytes. In in vitro lung epithelial cell (Calu-3) infection model, we found that glycolysis and glutaminolysis are essential for virus replication, and blocking these metabolic pathways caused significant reduction in virus production. Taken together, we therefore hypothesized that severe acute respiratory syndrome coronavirus-2 utilizes and rewires pathways governing central carbon metabolism leading to the efflux of toxic metabolites and associated with disease severity. Thus, the host metabolic perturbation could be an attractive strategy to limit the viral replication and disease severity
    corecore