42 research outputs found

    Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa)

    Get PDF
    For decades, linden trees (basswoods or lime trees), and particularly silver linden (Tilia tomentosa), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar resources late in the tree's flowering period. We recommend ensuring sufficient alternative food sources in cities during late summer to reduce bee deaths on silver linden. Silver linden metabolites such as floral volatiles, pollen chemistry and nectar secondary compounds remain underexplored, particularly their toxic or behavioural effects on bees. Some evidence for the presence of caffeine in linden nectar may mean that linden trees can chemically deceive foraging bees to make sub-optimal foraging decisions, in some cases leading to their starvation

    A modified cementing technique using BoneSource to augment fixation of the acetabulum in a sheep model

    Get PDF
    Background and purpose Our aim was to prove in an animal model that the use of HA paste at the cement-bone interface in the acetabulum would improve fixation. We examined, in sheep, the effect of interposing a layer of hydroxyapatite cement around the periphery of a polyethylene socket prior to fixing it using polymethylemethacrylate (PMMA). Methods We made a randomized study involving 22 sheep to test whether the application of BoneSource hydroxyapatite material to the surface of the ovine acetabulum prior to cementing a polyethylene cup at hip arthroplasty improved the fixation and the nature of the interface. We studied the gross radiographical appearance of the implant-bone interface and the histological appearance at the interface. Results There were more radiolucencies evident in the control group. Histologically, only sheep randomized into the BoneSource group exhibited a fully osseointegrated interface. Use of the hydroxyapatite material did not confer any detrimental effects. In some cases the material appeared to have been fully resorbed. When the material was evident on histological section, it was incorporated into an osseointegrated interface. There was no giant cell reaction present in any case. There was no evidence of migration of BoneSource to the articulation. Interpretation The application of HA material prior to cementation of a socket produced an improved interface. The technique may be useful in man with to extend the longevity of the cemented implant by protecting the socket interface from the effect of hydrodynamic fluid flow and particulate debris

    Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems

    Get PDF
    Background and purpose Dual-energy X-ray absorptiometry (DXA) analysis of the 7 periprosthetic Gruen zones is the most commonly used protocol to evaluate bone remodeling after the implantation of conventional femoral stems. We assessed the value of DXA after cementless primary total hip arthroplasty (THA) by comparing the effect of progressive shortening of the stem of two femoral implants on periprosthetic bone remodeling using a specifically developed protocol of analysis with 5 periprosthetic regions of interest (ROIs)

    Optimising perioperative care for hip and knee arthroplasty in South Africa: a Delphi consensus study

    Get PDF
    Background A structured approach to perioperative patient management based on an enhanced recovery pathway protocol facilitates early recovery and reduces morbidity in high income countries. However, in low- and middle-income countries (LMICs), the feasibility of implementing enhanced recovery pathways and its influence on patient outcomes is scarcely investigated. To inform similar practice in LMICs for total hip and knee arthroplasty, it is necessary to identify potential factors for inclusion in such a programme, appropriate for LMICs. Methods Applying a Delphi method, 33 stakeholders (13 arthroplasty surgeons, 12 anaesthetists and 8 physiotherapists) from 10 state hospitals representing 4 South African provinces identified and prioritised i) risk factors associated with poor outcomes, ii) perioperative interventions to improve outcomes and iii) patient and clinical outcomes necessary to benchmark practice for patients scheduled for primary elective unilateral total hip and knee arthroplasty. Results Thirty of the thirty-three stakeholders completed the 3 months Delphi study. The first round yielded i) 36 suggestions to preoperative risk factors, ii) 14 (preoperative), 18 (intraoperative) and 23 (postoperative) suggestions to best practices for perioperative interventions to improve outcomes and iii) 25 suggestions to important postsurgical outcomes. These items were prioritised by the group in the consecutive rounds and consensus was reached for the top ten priorities for each category. Conclusion The consensus derived risk factors, perioperative interventions and important outcomes will inform the development of a structured, perioperative multidisciplinary enhanced patient care protocol for total hip and knee arthroplasty. It is anticipated that this study will provide the construct necessary for developing pragmatic enhanced care pathways aimed at improving patient outcomes after arthroplasty in LMICs

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Positive pressure in xylem and its role in hydraulic function

    Get PDF
    Although transpiration-driven transport of xylem sap is well known to operate under absolute negative pressure, many terrestrial, vascular plants show positive xylem pressure above atmospheric pressure on a seasonal or daily basis, or during early developmental stages. The actual location and mechanisms behind positive xylem pressure remain largely unknown, both in plants that show seasonal xylem pressure before leaf flushing, and those that show a diurnal periodicity of bleeding and guttation. Available evidence shows that positive xylem pressure can be driven based on purely physical forces, osmotic exudation into xylem conduits, or hydraulic pressure in parenchyma cells associated with conduits. The latter two mechanisms may not be mutually exclusive and can be understood based on a similar modelling scenario. Given the renewed interest in positive xylem pressure, this review aims to provide a constructive way forward by discussing similarities and differences of mechanistic models, evaluating available evidence for hydraulic functions, such as rehydration of tissues, refilling of water stores, and embolism repair under positive pressure, and providing recommendations for future research, including methods that avoid or minimise cutting artefacts.Peer reviewe
    corecore