517 research outputs found

    The Importance of Laboratory Experiments in Landslide Investigation

    Get PDF
    This study focuses on a better understanding of mass movements and on the influences of different boundary conditions on velocities of creeping slopes. A well monitored example of a slowly creeping landslide is the mass movement Hochmais - Atemkopf, situated in the Kaunertal, Tyrol, Austria (Fig. 1). The long term monitoring program for more than 40 years of this landslide gives a good impression of its time dependent behaviour. A large amount of additional data, as geological mapping, boreholes, geophysical investigation and so on provides a funded base for the model’s geometry. The most influencing factor for finite element calculations is besides the model’s geometry the rheological model and the therefor adapted material properties. Creep laboratory experiments have been performed and evaluated for the most active sliding zone. Long term shear tests from 1964 have been reevaluated and compared with current long term triaxial tests. The experiments reveal a non linear dependence between equivalent stress and displacement rate. An elasto, visco - plastic rheological model with a non-linear viscose deformation has been fitted to those results

    Trasporto di metalli verso i laghi del sistema Flumendosa Campidano in conseguenza dell'erosione dei suoli

    Get PDF
    Weathering of mine tailings represents an important metal source in Sardinia. The accumulation of mobilized metals onto soil in the mineralized areas and the subsequent erosional transport of soil towards the freshwater reservoirs endangers the quality of drinking water. The here described study on the Flumendosa-Campidano system shows the prescence and spatial distribution of metals in the system and underlines the necessity to control the more mobile and dangerous metals, as for exampIe cadmium

    Human Dirofilaria repens Infection in Romania: A Case Report

    Get PDF
    Human dirofilariasis is a zoonotic infectious disease caused by the filarial nematodes of dogs Dirofilaria repens and Dirofilaria immitis. Depending on the species involved, human infections usually manifest as one cutaneous or visceral larva migrans that forms a painless nodule in the later course of disease. Dirofilariae are endemic in the Mediterranean, particularly in Italy. They are considered as emerging pathogens currently increasing their geographical range. We present one of the few known cases of human dirofilariasis caused by D. repens in Romania. The patient developed unusual and severe clinical manifestations that mimicked pathological conditions like cellulitis or deep venous thrombosis

    What are effects of a spaced activation of virtual patients in a pediatric course?

    Get PDF
    BACKGROUND: Virtual patients (VPs) have a long tradition in the curriculum of the medical faculty at the Ludwig-Maximilians-University (LMU) Munich. However, the pediatric VPs were not well integrated into the curriculum and hardly used by students. METHODS: Therefore we created and implemented a self-contained E-learning module based on virtual patients (VPs), which was embedded into the pediatric curriculum. Students taking this course were divided into two groups. For Group A the virtual patients were activated in a timed order (“spaced activation”), whereas Group B could work on all VPs from the beginning. We investigated the performance of these two groups concerning usage pattern including number of sessions and session duration, score on questions integrated into the VP and results of the intermediate exam. RESULTS: The integration of the VPs into the pediatric course was successful for both groups. The usage pattern for the spaced activation turned out to be more balanced, however we did not find any significant differences in the results of the intermediate exam, the score on questions included in the VPs nor in the time students spent working on the VPs. CONCLUSIONS: Our study showed that the spaced activation led to a more balanced VP usage pattern with a lower peak of sessions at the end of the course. Further studies will have to investigate whether a spaced activation of VPs leads to favorable long-term learning outcomes

    Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria

    Get PDF
    Background: In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. Methods: A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Results: Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. Conclusions: The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria

    Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria

    Get PDF
    Background: In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. Methods: A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Results: Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. Conclusions: The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria

    A strategy for GIS-based 3-D slope stability modelling over large areas

    Get PDF
    Abstract. GIS-based deterministic models may be used for landslide susceptibility mapping over large areas. However, such efforts require specific strategies to (i) keep computing time at an acceptable level, and (ii) parameterize the geotechnical data. We test and optimize the performance of the GIS-based, 3-D slope stability model r.slope.stability in terms of computing time and model results. The model was developed as a C- and Python-based raster module of the open source software GRASS GIS and considers the 3-D geometry of the sliding surface. It calculates the factor of safety (FoS) and the probability of slope failure (Pf) for a number of randomly selected potential slip surfaces, ellipsoidal or truncated in shape. Model input consists of a digital elevation model (DEM), ranges of geotechnical parameter values derived from laboratory tests, and a range of possible soil depths estimated in the field. Probability density functions are exploited to assign Pf to each ellipsoid. The model calculates for each pixel multiple values of FoS and Pf corresponding to different sliding surfaces. The minimum value of FoS and the maximum value of Pf for each pixel give an estimate of the landslide susceptibility in the study area. Optionally, r.slope.stability is able to split the study area into a defined number of tiles, allowing parallel processing of the model on the given area. Focusing on shallow landslides, we show how multi-core processing makes it possible to reduce computing times by a factor larger than 20 in the study area. We further demonstrate how the number of random slip surfaces and the sampling of parameters influence the average value of Pf and the capacity of r.slope.stability to predict the observed patterns of shallow landslides in the 89.5 km2 Collazzone area in Umbria, central Italy

    Finite element computation of magnetohydrodynamic nanofluid convection from an oscillating inclined plate with radiative flux, heat source and variable temperature effects

    Get PDF
    The present work describes finite element computations for radiative magnetohydrodynamic convective Newtonian nanofluid flow from an oscillating inclined porous plate with variable temperature. Heat source/sink and buoyancy effects are included in the mathematical model. The problem is formulated by employing Tiwari-Das nanofluid model and two water - based nanofluids with spherical shaped metal nano particles as copper and alumina are considered. The Brinkman and Maxwell-Garnetts models are used for the dynamic viscosity and effective thermal conductivity of the nanofluids respectively. An algebraic flux model, the Rosseland diffusion approximation is adopted to simulate thermal radiative flux effects. The dimensionless, coupled governing partial differential equations are numerically solved via the finite element method with weak variational formulation by imposing initial and boundary conditions with a weighted residual scheme. A grid independence study is also conducted. The finite element solutions are reduced to known previous solutions in some limiting cases of the present investigation and are found to be in good agreement with published work. This investigation is relevant to electromagnetic nanomaterial manufacturing processes operating at high temperatures where radiation heat transfer is significant
    corecore