1,840 research outputs found

    Composite Reflective/Absorptive IR-Blocking Filters Embedded in Metamaterial Antireflection Coated Silicon

    Full text link
    Infrared (IR) blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency selective structures on silicon and a thin (50 Ī¼m\mu \textrm{m} thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects āˆ¼\sim50\% of the incoming light and blocks \textgreater 99.8\% of the total power with negligible thermal gradients and excellent low frequency transmission. This allows for a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1\%, and the in-band absorption of the powder mix is below 1\% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements

    Structure of the master regulator Rns reveals an inhibitor of enterotoxigenic Escherichia coli virulence regulons

    Get PDF
    Enteric infections caused by the gram-negative bacteria enterotoxigenic Escherichia coli (ETEC), Vibrio cholerae, Shigella flexneri, and Salmonella enterica are among the most common and affect billions of people each year. These bacteria control expression of virulence factors using a network of transcriptional regulators, some of which are modulated by small molecules as has been shown for ToxT, an AraC family member from V. cholerae. In ETEC the expression of many types of adhesive pili is dependent upon the AraC family member Rns. We present here the 3 ƅ crystal structure of Rns and show it closely resembles ToxT. Rns crystallized as a dimer via an interface similar to that observed in other dimeric AraCā€™s. Furthermore, the structure of Rns revealed the presence of a ligand, decanoic acid, that inhibits its activity in a manner similar to the fatty acid mediated inhibition observed for ToxT and the S. enterica homologue HilD. Together, these results support our hypothesis that fatty acids regulate virulence controlling AraC family members in a common manner across a number of enteric pathogens. Furthermore, for the first time this work identifies a small molecule capable of inhibiting the ETEC Rns regulon, providing a basis for development of therapeutics against this deadly human pathogen

    Laboratory Focus on Improving the Culture of Biosafety: Statewide Risk Assessment of Clinical Laboratories That Process Specimens for Microbiologic Analysis

    Get PDF
    The Wisconsin State Laboratory of Hygiene challenged Wisconsin laboratories to examine their biosafety practices and improve their culture of biosafety. One hundred three clinical and public health laboratories completed a questionnaire-based, microbiology-focused biosafety risk assessment. Greater than 96% of the respondents performed activities related to specimen processing, direct microscopic examination, and rapid nonmolecular testing, while approximately 60% performed culture interpretation. Although they are important to the assessment of risk, data specific to patient occupation, symptoms, and travel history were often unavailable to the laboratory and, therefore, less contributory to a microbiology-focused biosafety risk assessment than information on the specimen source and test requisition. Over 88% of the respondents complied with more than three-quarters of the mitigation control measures listed in the survey. Facility assessment revealed that subsets of laboratories that claim biosafety level 1, 2, or 3 status did not possess all of the biosafety elements considered minimally standard for their respective classifications. Many laboratories reported being able to quickly correct the minor deficiencies identified. Task assessment identified deficiencies that trended higher within the general (not microbiology-specific) laboratory for core activities, such as packaging and shipping, direct microscopic examination, and culture modalities solely involving screens for organism growth. For traditional microbiology departments, opportunities for improvement in the cultivation and management of highly infectious agents, such as acid-fast bacilli and systemic fungi, were revealed. These results derived from a survey of a large cohort of small- and large-scale laboratories suggest the necessity for continued microbiology-based understanding of biosafety practices, vigilance toward biosafety, and enforcement of biosafety practices throughout the laboratory setting

    Reducing Controversy by Connecting Opposing Views

    Get PDF
    Peer reviewe

    The Atacama Cosmology Telescope: The polarization-sensitive ACTPol instrument

    Get PDF
    The Atacama Cosmology Telescope (ACT) is designed to make high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3 degree field of view, 100 mK cryogenics with continuous cooling, and meta material anti-reflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich and kinetic Sunyaev-Zel'dovich signals, and CMB lensing due to large scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems

    An Equation of State of a Carbon-Fibre Epoxy Composite under Shock Loading

    Full text link
    An anisotropic equation of state (EOS) is proposed for the accurate extrapolation of high-pressure shock Hugoniot (anisotropic and isotropic) states to other thermodynamic (anisotropic and isotropic) states for a shocked carbon-fibre epoxy composite (CFC) of any symmetry. The proposed EOS, using a generalised decomposition of a stress tensor [Int. J. Plasticity \textbf{24}, 140 (2008)], represents a mathematical and physical generalisation of the Mie-Gr\"{u}neisen EOS for isotropic material and reduces to this equation in the limit of isotropy. Although a linear relation between the generalised anisotropic bulk shock velocity UsAU^{A}_{s} and particle velocity upu_{p} was adequate in the through-thickness orientation, damage softening process produces discontinuities both in value and slope in the UsAU^{A}_{s}-upu_{p} relation. Therefore, the two-wave structure (non-linear anisotropic and isotropic elastic waves) that accompanies damage softening process was proposed for describing CFC behaviour under shock loading. The linear relationship UsAU^{A}_{s}-upu_{p} over the range of measurements corresponding to non-linear anisotropic elastic wave shows a value of c0Ac^{A}_{0} (the intercept of the UsAU^{A}_{s}-upu_{p} curve) that is in the range between first and second generalised anisotropic bulk speed of sound [Eur. Phys. J. B \textbf{64}, 159 (2008)]. An analytical calculation showed that Hugoniot Stress Levels (HELs) in different directions for a CFC composite subject to the two-wave structure (non-linear anisotropic elastic and isotropic elastic waves) agree with experimental measurements at low and at high shock intensities. The results are presented, discussed and future studies are outlined.Comment: 12 pages, 9 figure

    Large-Aperture Wide-Bandwidth Anti-Reflection-Coated Silicon Lenses for Millimeter Wavelengths

    Get PDF
    The increasing scale of cryogenic detector arrays for sub-millimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n = 3.4, low loss, and relatively high thermal conductivity is a nearly optimal material for these purposes, but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coffecient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated and coated silicon lenses as large as 33.4 cm in diameter with coatings optimized for use between 125-165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30 deg. with low cross-polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to sub-millimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth

    A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics

    Get PDF
    A novel, centrifugal disk-based micro-total analysis system (mu TAS) for low cost and high throughput semi-automated immunoassay processing was developed. A key innovation in the disposable immunoassay disk design is in a fluidic structure that enables very efficient micro-mixing based on a reciprocating mechanism in which centrifugal acceleration acting upon a liquid element first generates and stores pneumatic energy that is then released by a reduction of the centrifugal acceleration, resulting in a reversal of direction of flow of the liquid. Through an alternating sequence of high and low centrifugal acceleration, the system reciprocates the flow of liquid within the disk to maximize incubation/hybridization efficiency between antibodies and antigen macromolecules during the incubation/hybridization stage of the assay. The described reciprocating mechanism results in a reduction in processing time and reagent consumption by one order of magnitude.open121

    (Re)imagining the ā€˜backstreetā€™:Anti-abortion campaigning against decriminalisation in the UK

    Get PDF
    The risk of death or serious injury from ā€˜backstreet abortionsā€™ was an important narrative in the 20th century campaign to liberalise abortion in the UK. Since then, clinical developments have reduced the overall health risks of abortion, and international health organisations have been set up to provide cross-border, medically safe abortions to places where it is unlawful, offering advice and, where possible, supplying abortion pills. These changes mean that pro-choice campaigns in Europe have often moved away from the risks of ā€˜backstreet abortionsā€™ as a central narrative when campaigning for abortion liberalisation. In contrast, in the UK, anti-abortion activists are increasingly using ideas about ā€˜backstreet abortionsā€™ to resist further liberalisation. These claims can be seen to fit within a broader shift from morals to risk within moral regulation campaigns and build on anti-abortion messages framed as being ā€˜pro-womenā€™, with anti-abortion activists claiming to be the ā€˜saversā€™ of women. Using a parliamentary debate as a case study, this article will illustrate these trends and show how the ā€˜backstreetā€™ metaphor within anti-abortion campaigns builds on three interconnected themes of ā€˜abortion-as-harmfulā€™, ā€˜abortion industryā€™, and ā€˜abortion cultureā€™. This article will argue that the anti-abortion movementā€™s adoption of risk-based narratives contains unresolved contradictions due to the underlying moral basis of their position. These are exacerbated by the need, in this case, to defend legislation that they fundamentally disagree with. Moreover, their attempts to construct identifiable ā€˜harmsā€™ and vulnerable ā€˜victimsā€™, which are components of moral regulation campaigns, are unlikely to be convincing in the context of widespread public support for abortion

    Synchronous oceanic spreading and continental rifting in West Antarctica

    Get PDF
    Magnetic anomalies associated with new ocean crust formation in the Adare Basin off north-western Ross Sea (43 ā€“ 26ā€‰Ma) can be traced directly into the Northern Basin that underlies the adjacent morphological continental shelf, implying a continuity in the emplacement of oceanic crust. Steep gravity gradients along the margins of the Northern Basin, particularly in the east, suggest that little extension and thinning of continental crust occurred before it ruptured and the new oceanic crust formed, unlike most other continental rifts and the Victoria Land Basin further south. A pre-existing weak crust and localisation of strain by strike slip faulting are proposed as the factors allowing the rapid rupture of continental crust
    • ā€¦
    corecore