132 research outputs found

    Regional sociocultural differences as important correlate of physical activity and sedentary behaviour in Swiss preschool children.

    Get PDF
    Regional differences in physical activity in school-aged children and adults even within one country with the same political and health care system have been observed and could not be explained by sociodemographic or individual variables. We analysed whether such differences were already present in preschool children. Swiss children from 84 childcare centres in five cantons (Aargau, Bern, Fribourg, Vaud, Zurich) comprising about 50% of the population of the country participated. Physical activity was quantified with accelerometers (ActiGraph, wGT3X-BT) and potential correlates were assessed with measurements at the childcare centre or questionnaires. Mixed regression models were used to test associations between potential correlates of total physical activity (TPA), moderate-to-vigorous physical activity (MVPA), light physical activity (LPA) or sedentary behaviour with a special focus on regional differences. 394 of 476 children (83%) provided valid physical activity data (at least 2 weekdays and 1 weekend day with 10 h recording; mean age 3.9 ± 0.7 years, 54% boys) with 26% and 74% living in the French- and German-speaking parts of Switzerland, respectively. Days consisted of (mean ± standard deviation) 1.5 ± 0.5 h MVPA, 5.0 ± 0.6 h LPA, and 6.3 ± 0.8 h sedentary behaviour with an average of 624 ± 150 counts/min TPA. TPA and MVPA (but not sedentary behaviour or LPA) increased with age, were higher in boys and children with better motor skills. Despite controlling for individual characteristics, familial factors and childcare exposure, children from the French-speaking part of Switzerland showed 13% less TPA, 14% less MVPA, 6% less LPA and 8% more sedentary behaviour than German-speaking children. Beside motor skills and non-modifiable individual factors, the regional sociocultural difference was the most important correlate of phyical activity and sedentary behaviour. Therefore, regionally adapted public health strategies may be needed

    Correlates of preschool children's objectively measured physical activity and sedentary behavior: a cross-sectional analysis of the SPLASHY study.

    Get PDF
    Identifying ways to promote physical activity and decrease sedentary time during childhood is a key public health issue. Research on the putative influences on preschool children's physical activity (PA) and sedentary behavior (SB) is limited and has yielded inconsistent results. Our aim was to identify correlates of PA and SB in preschool children. Cross-sectional data were drawn from the Swiss Preschoolers' Health Study (SPLASHY), a Swiss population-based cohort study. Of 476 two to six year old children, 394 (54% boys) had valid PA data assessed by accelerometry. Information on exposure data was directly measured or extracted from parental questionnaires. Multilevel linear regression modeling was used to separately assess associations between 35 potential correlates and total PA (TPA), moderate-to-vigorous PA (MVPA) and SB. In total, 12 correlates from different domains were identified. TPA and MVPA were greater in boys than girls, increased with age and were positively associated with gross motor skills. Children from single parent families had a higher level of TPA and spent less time sedentary than those living with two parents. Time spent outdoors was positively associated with TPA and negatively with SB. The child's activity temperament was related all three outcomes, whereas parental sports club membership, living area per person and neighborhood safety were associated with SB only. Fixed and random factors in the final models accounted for 28%, 32% and 22% of the total variance in TPA, MVPA and SB, respectively. Variance decomposition revealed that age, sex and activity temperament were the most influential correlates of both, TPA and MVPA, whereas the child's activity temperament, time outdoors and neighborhood safety were identified as the most important correlates of SB. A multidimensional set of correlates of young children's activity behavior has been identified. Personal factors had the greatest influence on PA, whereas environmental-level factors had the greatest influence on SB. Moreover, we identified a number of previously unreported, potentially modifiable correlates of young children's PA and SB. These factors could serve to define target groups or become valuable targets for change in future interventions. Current Controlled Trials ISRCTN41045021 (date of registration: 21.03.14)

    p21Waf1 expression is regulated by nuclear intermediate filament vimentin in neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human neuroblastoma (NB) cell lines may present with either one of the so-called S-and N-subtypes. We have previously reported a strong correlation between protein expression levels of vimentin, an S-subtype marker, and the p21<sup>Waf1 </sup>cyclin-dependent kinase inhibitor. We here investigated whether this correlation extend to the mRNA level in NB cell lines as well as in patients' tumors. We also further explored the relationship between expression of vimentin and p21, by asking whether vimentin could regulate p21 expression.</p> <p>Methods</p> <p>Vimentin and p21 mRNA levels in NB cell lines as well as in patients' tumors (<it>n </it>= 77) were quantified using Q-PCR. Q-PCR data obtained from tumors of high risk NB patients (<it>n </it>= 40) were analyzed in relation with the overall survival using the Log-rank Kaplan-Meier estimation. siRNA-mediated depletion or overexpression of vimentin in highly or low expressing vimentin cell lines, respectively, followed by protein expression and promoter activation assays were used to assess the role of vimentin in modulating p21 expression.</p> <p>Results</p> <p>We extend the significant correlation between vimentin and p21 expression to the mRNA level in NB cell lines as well as in patients' tumors. Overall survival analysis from Q-PCR data obtained from tumors of high risk patients suggests that lower levels of p21 expression could be associated with a poorer outcome. Our data additionally indicate that the correlation observed between p21 and vimentin expression levels results from p21 transcriptional activity being regulated by vimentin. Indeed, downregulating vimentin resulted in a significant decrease in p21 mRNA and protein expression as well as in p21 promoter activity. Conversely, overexpressing vimentin triggered an increase in p21 promoter activity in cells with a nuclear expression of vimentin.</p> <p>Conclusion</p> <p>Our results suggest that p21 mRNA tumor expression level could represent a refined prognostic factor for high risk NB patients. Our data also show that vimentin regulates p21 transcription; this is the first demonstration of a gene regulating function for this type III-intermediate filament.</p

    Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes

    Get PDF
    This content may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This material originally appeared in Appl. Phys. Lett. 100, 031111 (2012) and may be found at https://doi.org/10.1063/1.3678031.We demonstrate room temperature, continuous wave lasing of laser diodes based on AlGaAs whispering gallery mode (WGM) resonators (microcylinder and microring) embedding a quantum dot (QD) active layer. Using InGaAlAs QDs, high-Q (>60 000) lasing modes are observed around 910 nm, up to 50 °C. Lasing with similar performance is obtained around 1230 nm, using InAs QDs. Furthermore, we show that the current injection in the active part of the device is improved in ring resonators, leading to threshold currents of approximately 4 mA for a device with 80 μm diameter. This geometry also suppresses WGMs with a high radial order, thus simplifying the lasing spectra. In these conditions, stable single-mode and two-color lasing can be obtained.EC/FP7/250056/EU/Terahertz room-temperature integrated parametric source/TREASUR

    Neuropeptide S-Mediated Facilitation of Synaptic Transmission Enforces Subthreshold Theta Oscillations within the Lateral Amygdala

    Get PDF
    The neuropeptide S (NPS) receptor system modulates neuronal circuit activity in the amygdala in conjunction with fear, anxiety and the expression and extinction of previously acquired fear memories. Using in vitro brain slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the effects of NPS on neural activity in the lateral amygdala as a key region for the formation and extinction of fear memories. We are able to demonstrate that NPS augments excitatory glutamatergic synaptic input onto both projection neurons and interneurons of the lateral amygdala, resulting in enhanced spike activity of both types of cells. These effects were at least in part mediated by presynaptic mechanisms. In turn, inhibition of projection neurons by local interneurons was augmented by NPS, and subthreshold oscillations were strengthened, leading to their shift into the theta frequency range. These data suggest that the multifaceted effects of NPS on amygdaloid circuitry may shape behavior-related network activity patterns in the amygdala and reflect the peptide's potent activity in various forms of affective behavior and emotional memory

    Mitochondrial Fragmentation Is Involved in Methamphetamine-Induced Cell Death in Rat Hippocampal Neural Progenitor Cells

    Get PDF
    Methamphetamine (METH) induces neurodegeneration through damage and apoptosis of dopaminergic nerve terminals and striatal cells, presumably via cross-talk between the endoplasmic reticulum and mitochondria-dependent death cascades. However, the effects of METH on neural progenitor cells (NPC), an important reservoir for replacing neurons and glia during development and injury, remain elusive. Using a rat hippocampal NPC (rhNPC) culture, we characterized the METH-induced mitochondrial fragmentation, apoptosis, and its related signaling mechanism through immunocytochemistry, flow cytometry, and Western blotting. We observed that METH induced rhNPC mitochondrial fragmentation, apoptosis, and inhibited cell proliferation. The mitochondrial fission protein dynamin-related protein 1 (Drp1) and reactive oxygen species (ROS), but not calcium (Ca2+) influx, were involved in the regulation of METH-induced mitochondrial fragmentation. Furthermore, our results indicated that dysregulation of ROS contributed to the oligomerization and translocation of Drp1, resulting in mitochondrial fragmentation in rhNPC. Taken together, our data demonstrate that METH-mediated ROS generation results in the dysregulation of Drp1, which leads to mitochondrial fragmentation and subsequent apoptosis in rhNPC. This provides a potential mechanism for METH-related neurodegenerative disorders, and also provides insight into therapeutic strategies for the neurodegenerative effects of METH

    Effects of elevated seawater pCO2 on gene expression patterns in the gills of the green crab, Carcinus maenas

    Get PDF
    Background: The green crab Carcinus maenas is known for its high acclimation potential to varying environmental abiotic conditions. A high ability for ion and acid-base regulation is mainly based on an efficient regulation apparatus located in gill epithelia. However, at present it is neither known which ion transport proteins play a key role in the acid-base compensation response nor how gill epithelia respond to elevated seawater pCO2 as predicted for the future. In order to promote our understanding of the responses of green crab acid-base regulatory epithelia to high pCO2, Baltic Sea green crabs were exposed to a pCO2 of 400 Pa. Gills were screened for differentially expressed gene transcripts using a 4,462-feature microarray and quantitative real-time PCR. Results: Crabs responded mainly through fine scale adjustment of gene expression to elevated pCO2. However, 2% of all investigated transcripts were significantly regulated 1.3 to 2.2-fold upon one-week exposure to CO2 stress. Most of the genes known to code for proteins involved in osmo- and acid-base regulation, as well as cellular stress response, were were not impacted by elevated pCO2. However, after one week of exposure, significant changes were detected in a calcium-activated chloride channel, a hyperpolarization activated nucleotide-gated potassium channel, a tetraspanin, and an integrin. Furthermore, a putative syntaxin-binding protein, a protein of the transmembrane 9 superfamily, and a Cl-/HCO3 - exchanger of the SLC 4 family were differentially regulated. These genes were also affected in a previously published hypoosmotic acclimation response study. Conclusions: The moderate, but specific response of C. maenas gill gene expression indicates that (1) seawater acidification does not act as a strong stressor on the cellular level in gill epithelia; (2) the response to hypercapnia is to some degree comparable to a hypoosmotic acclimation response; (3) the specialization of each of the posterior gill arches might go beyond what has been demonstrated up to date; and (4) a re-configuration of gill epithelia might occur in response to hypercapnia

    Three principles for the progress of immersive technologies in healthcare training and education

    Get PDF
    corecore