6,446 research outputs found

    Ethnographies of Electricity Scarcity: mobile phone charging spaces and the recrafting of energy poverty in Africa

    Get PDF
    In this paper, we explore the practices and spaces of mobile phone charging in The Gambia and Sierra Leone through the lens of 'electricity scarcity‘ as a means to conceptualise electricity access in West Africa. The International Energy Agency (IEA) is seen as the leading authority on the state of global energy access, and is frequently cited by government and non-government bodies. We, however, suggest that the IEA‘s quantitative and binary framing of electricity access is analytically problematic for understanding energy poverty. Using ethnographic methods, including observation and semi-structured interviews, we provide insights into the changing socio-technological, socio-political and socio-economic dimensions of mobile phone charging including its relationship with the built environment. Comparing mobile phone charging in The Gambia and Sierra Leone, clearly shows that the notion of absolute electricity scarcity which is promulgated by IEA statistics only offers a limited picture of energy poverty, especially at the locale. Instead, drawing on political ecology scholarship, we propose a concept of political electricity scarcity as an approach enables a more human-centred and nuanced understanding of how energy poverty operates or is mitigated through community-based structures or at a household level. By reframing energy poverty issues through this lens, we are able to illustrate the role that political economy dynamics play in shaping the electricity flows in rural Sub-Saharan Africa and who ultimately gets what kind of electricity access

    The role of HER1-HER4 and EGFRvIII in hormone-refractory prostate cancer

    Get PDF
    <b>Purpose</b>: The role of the type I receptor tyrosine kinase (HER) family in progression of prostate cancer is controversial. Breast cancer studies show that these receptors should be investigated as a family. The current study investigates expression of HER1-HER4 and EGFRvIII in matched hormone-sensitive and hormone-refractory prostate tumors. <b>Experimental Design</b>: Immunohistochemical analysis was used to investigate protein expression of HER1-HER4, EGFRvIII, and phosphorylated Akt (pAkt) in matched hormone-sensitive and hormone-refractory prostate tumors. <b>Results</b>: Surprisingly, high HER2 membrane expression in hormone-sensitive tumors was associated with an increased time to biochemical relapse (<i>P</i> = 0.0003), and this translated into longer overall survival (<i>P</i> = 0.0021). Consistent with other studies, HER4 membrane expression in hormone-sensitive tumors was associated with longer time to biochemical relapse (<i>P</i> = 0.042), and EGFRvIII membrane expression was associated with shorter time to biochemical relapse (<i>P</i> = 0.015). An increase in pAkt expression was associated with reduced survival (<i>P</i> = 0.0098). Multivariate analysis showed that HER2 was an independent positive predictive marker of time to relapse in hormone-sensitive prostate tumors (<i>P</i> = 0.014). In contrast, high HER2 expression in hormone-refractory tumors was associated with decreased time to death from biochemical relapse (<i>P</i> = 0.039), and EGFRvIII nuclear expression was associated with decreased time to death from biochemical relapse and decreased overall survival (<i>P</i> = 0.02 and <i>P</i> = 0.005). <b>Conclusion</b>: These results suggest that the HER family may have multiple roles in prostate cancer, and that expression of the proteins alone is insufficient to predict the biological response that they may elicit

    Finding the Median (Obliviously) with Bounded Space

    Full text link
    We prove that any oblivious algorithm using space SS to find the median of a list of nn integers from {1,...,2n}\{1,...,2n\} requires time Ω(nloglogSn)\Omega(n \log\log_S n). This bound also applies to the problem of determining whether the median is odd or even. It is nearly optimal since Chan, following Munro and Raman, has shown that there is a (randomized) selection algorithm using only ss registers, each of which can store an input value or O(logn)O(\log n)-bit counter, that makes only O(loglogsn)O(\log\log_s n) passes over the input. The bound also implies a size lower bound for read-once branching programs computing the low order bit of the median and implies the analog of PNPcoNPP \ne NP \cap coNP for length o(nloglogn)o(n \log\log n) oblivious branching programs

    Quantum error correction via robust probe modes

    Full text link
    We propose a new scheme for quantum error correction using robust continuous variable probe modes, rather than fragile ancilla qubits, to detect errors without destroying data qubits. The use of such probe modes reduces the required number of expensive qubits in error correction and allows efficient encoding, error detection and error correction. Moreover, the elimination of the need for direct qubit interactions significantly simplifies the construction of quantum circuits. We will illustrate how the approach implements three existing quantum error correcting codes: the 3-qubit bit-flip (phase-flip) code, the Shor code, and an erasure code.Comment: 5 pages, 3 figure

    Attaining subclassical metrology in lossy systems with entangled coherent states

    Get PDF
    Quantum mechanics allows entanglement enhanced measurements to be performed, but loss remains an obstacle in constructing realistic quantum metrology schemes. However, recent work has revealed that entangled coherent states (ECSs) have the potential to perform robust subclassical measurements [J. Joo et al., Phys. Rev. Lett. 107, 083601 (2011)]. Up to now no read-out scheme has been devised that exploits this robust nature of ECSs, but we present here an experimentally accessible method of achieving precision close to the theoretical bound, even with loss.We show substantial improvements over unentangled classical states and highly entangled NOON states for a wide range of loss values, elevating quantum metrology to a realizable technology in the near future

    The relationship between 2D knee valgus angle during single leg squat, single leg land and drop jump screening tests

    Get PDF
    Context: Injuries to the anterior cruciate ligament (ACL) and patellofemoral joint (PFJ) are a significant problem in female athletes. A number of screening tasks have been used in the literature to identify those at greatest risk of injury. To date, no study has examined the relationship in 2-dimensional (2D) knee valgus between common screening tasks to determine whether individuals exhibit similar movement patterns across tasks. Objective: To establish whether frontal-plane projection angle (FPPA) during the single-leg squat (SLS), single-leg land (SLL), and drop jump (DJ) are related. Design: Cross-sectional study. Setting: University laboratory. Participants: 52 national-league female football players and 36 national-league female basketball players. Main Outcome Measures: 2D FPPA during the SLS, SLL, and DJ screening tasks. Results: Significant correlations were found between tasks. FPPA in the SLS was significantly correlated with SLL (r = .52) and DJ (r = .30), whereas FPPA in the SLL was also significantly correlated to DJ (r = .33). FPPA was significantly greater in the SLS than in the SLL (P < .001) and DJ (P < .001) and in the SLL than in the DJ (P < .001). Conclusion: The results showed that 2D FPPA is correlated across the SLS, SLL, and DJ tasks. However, significantly greater FPPA values in the unilateral tasks suggest that the DJ may not identify risk of injury in sports where primary injury mechanisms are during unilateral loading tasks. Therefore, it is recommended that both unilateral and bilateral tasks be included when screening for ACL and PFJ injury risk

    Absolute quantification of the host-to-parasite DNA ratio in Theileria parva-infected lymphocyte cell lines

    Get PDF
    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field

    Selection from read-only memory with limited workspace

    Full text link
    Given an unordered array of NN elements drawn from a totally ordered set and an integer kk in the range from 11 to NN, in the classic selection problem the task is to find the kk-th smallest element in the array. We study the complexity of this problem in the space-restricted random-access model: The input array is stored on read-only memory, and the algorithm has access to a limited amount of workspace. We prove that the linear-time prune-and-search algorithm---presented in most textbooks on algorithms---can be modified to use Θ(N)\Theta(N) bits instead of Θ(N)\Theta(N) words of extra space. Prior to our work, the best known algorithm by Frederickson could perform the task with Θ(N)\Theta(N) bits of extra space in O(NlgN)O(N \lg^{*} N) time. Our result separates the space-restricted random-access model and the multi-pass streaming model, since we can surpass the Ω(NlgN)\Omega(N \lg^{*} N) lower bound known for the latter model. We also generalize our algorithm for the case when the size of the workspace is Θ(S)\Theta(S) bits, where lg3NSN\lg^3{N} \leq S \leq N. The running time of our generalized algorithm is O(Nlg(N/S)+N(lgN)/lgS)O(N \lg^{*}(N/S) + N (\lg N) / \lg{} S), slightly improving over the O(Nlg(N(lgN)/S)+N(lgN)/lgS)O(N \lg^{*}(N (\lg N)/S) + N (\lg N) / \lg{} S) bound of Frederickson's algorithm. To obtain the improvements mentioned above, we developed a new data structure, called the wavelet stack, that we use for repeated pruning. We expect the wavelet stack to be a useful tool in other applications as well.Comment: 16 pages, 1 figure, Preliminary version appeared in COCOON-201

    Generalized Toffoli gates using qudit catalysis

    Full text link
    We present quantum networks for a n-qubit controlled gate C^{n-1}(U) which use a higher dimensional (qudit) ancilla as a catalyser. In its simplest form the network has only n two-particle gates (qubit-qudit) -- this is the minimum number of two-body interactions needed to couple all n+1 subsystems (n qubits plus one ancilla). This class of controlled gates includes the generalised Toffoli gate C^{n-1}(X) on n qubits, which plays an important role in several quantum algorithms and error correction. A particular example implementing this model is given by the dispersive limit of a generalised Jaynes-Cummings Hamiltonian of an effective spin-s interacting with a cavity mode.Comment: 5 pages, 3 fig
    corecore