27 research outputs found

    Fast-Convergent Federated Learning

    Full text link
    Federated learning has emerged recently as a promising solution for distributing machine learning tasks through modern networks of mobile devices. Recent studies have obtained lower bounds on the expected decrease in model loss that is achieved through each round of federated learning. However, convergence generally requires a large number of communication rounds, which induces delay in model training and is costly in terms of network resources. In this paper, we propose a fast-convergent federated learning algorithm, called FOLB, which performs intelligent sampling of devices in each round of model training to optimize the expected convergence speed. We first theoretically characterize a lower bound on improvement that can be obtained in each round if devices are selected according to the expected improvement their local models will provide to the current global model. Then, we show that FOLB obtains this bound through uniform sampling by weighting device updates according to their gradient information. FOLB is able to handle both communication and computation heterogeneity of devices by adapting the aggregations according to estimates of device's capabilities of contributing to the updates. We evaluate FOLB in comparison with existing federated learning algorithms and experimentally show its improvement in trained model accuracy, convergence speed, and/or model stability across various machine learning tasks and datasets.Comment: 17 page

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD
    corecore