15 research outputs found

    Only VpreB1, but not VpreB2, is expressed at levels which allow normal development of B cells

    Get PDF
    The surrogate light chain (SLC) consists of the polypeptides λ5 and, in the mouse, either VpreB1 or VpreB2. SLC associates with BILL-Cadherin and other glycoproteins to form the pro-B cell receptor (pro-BCR) at the pre-BI cell stage, and with the immunoglobulin μ heavy chain to form the pre-BCR at the pre-BII cell stage. The function of the pro-BCR, if any, is unknown, whereas the pre-BCR is crucial for proliferative expansion of pre-BII cells. To shed light on the functional properties of VpreB1 and VpreB2 in vivo, mice with either one or two VpreB1, or one or two VpreB2, alleles have been investigated. We show that B cell development in mice with two VpreB1 alleles is indistinguishable from that of normal mice. In contrast, mice with two VpreB2 alleles show an ∼1.6-fold increase in pre-BI and a 35% decrease in pre-BII cell numbers, while mice with only one VpreB2 allele show a reduction in B cell development manifested in a 2-fold enrichment in pre-BI cells and a 75% reduction in pre-BII cells. However, such a gene dosage effect is not observed for VpreB1. Our results suggest that the difference between VpreB1- and VpreB2-deficient mice is due to lower VpreB2 protein expression, thus limiting the formation of pre-BCRs and thereby the number of large, cycling pre-BII cell

    Surface μ Heavy Chain Signals Down-Regulation of the V(D)J-Recombinase Machinery in the Absence of Surrogate Light Chain Components

    Get PDF
    Early B cell development is characterized by stepwise, ordered rearrangement of the immunoglobulin (Ig) heavy (HC) and light (LC) chain genes. Only one of the two alleles of these genes is used to produce a receptor, a phenomenon referred to as allelic exclusion. It has been suggested that pre–B cell receptor (pre-BCR) signals are responsible for down-regulation of the VDJH-recombinase machinery (Rag1, Rag2, and terminal deoxynucleotidyl transferase [TdT]), thereby preventing further rearrangement on the second HC allele. Using a mouse model, we show that expression of an inducible μHC transgene in Rag2−/− pro–B cells induces down-regulation of the following: (a) TdT protein, (b) a transgenic green fluorescent protein reporter reflecting endogenous Rag2 expression, and (c) Rag1 primary transcripts. Similar effects were also observed in the absence of surrogate LC (SLC) components, but not in the absence of the signaling subunit Ig-α. Furthermore, in wild-type mice and in mice lacking either λ5, VpreB1/2, or the entire SLC, the TdT protein is down-regulated in μHC+LC− pre–B cells. Surprisingly, μHC without LC is expressed on the surface of pro–/pre–B cells from λ5−/−, VpreB1−/−VpreB2−/−, and SLC−/− mice. Thus, SLC or LC is not required for μHC cell surface expression and signaling in these cells. Therefore, these findings offer an explanation for the occurrence of HC allelic exclusion in mice lacking SLC components

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Toxicological and pharmacological assessment of AGEN1884, a novel human IgG1 anti-CTLA-4 antibody

    No full text
    <div><p>CTLA-4 and CD28 exemplify a co-inhibitory and co-stimulatory signaling axis that dynamically sculpts the interaction of antigen-specific T cells with antigen-presenting cells. Anti-CTLA-4 antibodies enhance tumor-specific immunity through a variety of mechanisms including: blockade of CD80 or CD86 binding to CTLA-4, repressing regulatory T cell function and selective elimination of intratumoral regulatory T cells via an Fcγ receptor-dependent mechanism. AGEN1884 is a novel IgG1 antibody targeting CTLA-4. It potently enhanced antigen-specific T cell responsiveness that could be potentiated in combination with other immunomodulatory antibodies. AGEN1884 was well-tolerated in non-human primates and enhanced vaccine-mediated antigen-specific immunity. AGEN1884 combined effectively with PD-1 blockade to elicit a T cell proliferative response in the periphery. Interestingly, an IgG2 variant of AGEN1884 revealed distinct functional differences that may have implications for optimal dosing regimens in patients. Taken together, the pharmacological properties of AGEN1884 support its clinical investigation as a single therapeutic and combination agent.</p></div

    AGEN1884 binds CTLA-4 and blocks CTLA-4 from interacting with CD80 and CD86.

    No full text
    <p>(A) Binding of fluorescently-labeled CD80-Fc or CD86-Fc (1 nM) in the presence of increasing concentrations of AGEN1884 or an IgG1 isotype control. Binding to CTLA-4-linked microspheres was assessed using Luminex. (B) CTLA-4-expressing CHO cells were pre-incubated with increasing concentrations of AGEN1884 or an IgG1 isotype control followed by the addition of a fixed concentration of fluorescently-labeled CD80-Fc or CD86-Fc (0.625 μg/ml). Binding of CD80-Fc or CD86-Fc to the CHO cells was assessed by flow cytometry. (C-D) AGEN1884 binding to a (C) Jurkat cell line genetically engineered to express human CTLA-4 or (D) wildtype (CTLA-4-negative) Jurkat cell line. Expression of CD28 was also assessed using an anti-CD28 antibody (empty histogram) compared to an isotype control (filled histogram) on the (E) CTLA-4-expressing and (F) wildtype (CTLA-4-negative) cells lines. (A-D) Representative data from one of three experiments indicate the mean ± SEM in each treatment group.</p
    corecore