228 research outputs found

    IP-backed finance

    Get PDF

    Grandidierella japonica (Amphipoda: Aoridae): a non-indigenous species in a Po delta lagoon of the northern Adriatic (Mediterranean Sea)

    Get PDF
    The introduction and spread of non-indigenous species is one of the main threats to biodiversity of aquatic ecosystems and it is becoming an increasing problem for the international scientific community. Aquaculture and related activities are recognized as one of the most important drivers of non-indigenous species in the Mediterranean. Grandidierella japonica Stephensen, 1938 is an aorid amphipod species native of Japan. This species had previously only been reported a few times outside the Pacific region, in particular from coastal waters of England and French Atlantic coasts. A population of the non-indigenous amphipod G. japonica, has been detected in the Sacca di Goro, a Po delta lagoon of the northern Adriatic Sea (Italy), representing the first record of this species in the Mediterranean Sea. Adults of both sexes and juveniles were collected in muddy sediments reaching high densities. We examined 24 specimens: 8 adult males, 12 females, and 4 undifferentiated juveniles. Our specimens displayed a variability in the position of teeth of male gnathopod 1. Likely vectors for this introduction are the commercial shellfish transplants, mainly oyster farming. The finding of a reproducing population of G. japonica suggests that the species has become well established in the Sacca di Goro. This finding also seems to be particularly relevant for the improvement on the knowledge of Mediterranean biodiversity and threats

    Management and Exploitation of Macroalgal Biomass as a Tool for the Recovery of Transitional Water Systems

    Get PDF
    Aquatic angiosperms favor the development of ecosystems services, the welfare of marine organisms and people. Generally, the presence of angiosperms in transitional water systems (TWS) are indicators of good ecosystem status. Presently, these environments are densely populated and often are so highly degraded that angiosperms have almost disappeared, replaced by tionitrophilic macroalgae responsible of anoxic events that deteriorate the environment furtherly. Although this trend is hardly reversible because the anthropogenic impact is increasing and the restoring of damaged environments within a reasonable time is difficult, recent studies have shown that by managing the harvesting of the natural algal species of commercial interest a progressive environmental recovery is achievable. Biomass-harvesting can contribute both to the removal of high amounts of nutrients and the generation of economic revenues for a sustainable, self-financed environmental restoration. In fact, unlike clam-farming which destroys the seabed and re-suspends large amounts of sediments, the proper management of the macroalgal biomass, can favor the nutrient abatement and the recolonization of aquatic angiosperms which help restore the conditions necessary for the conservation of the benthic and fish fauna and birds, and produce valuable economic resources

    Long-term changes of the trophic status in transitional ecosystems of the northern Adriatic Sea, key parameters and future expectations: The lagoon of Venice as a study case.

    Get PDF
    The determination of the trophic status of transitional ecosystems from the physico-chemical and biological point of view is one of the requirements of the European Water Framework Directive (WFD 2000/60/EC). In Italy, its determination is implemented by the Regional Agencies for Environmental Protection (ARPAs) that have activated multi-annual monitoring programs. However, as the availability of funds is increasingly scarce, the number of environmental parameters to detect environmental changes should be conveniently managed. The high number of environmental parameters, nutrient and macrophyte datasets available for the LTER-Italia site “Venice lagoon” can be an useful tool to analyze the trophic changes over recent years and to foresee environmental evolutions. Nutrient data on a spatial basis have been available since 1948, whereas macroalgal maps date back to 1980. The aim of this paper is to highlight the changes of the trophic status of the lagoon since the middle of the 20th century by considering the concentrations of nutrients in the surface sediments and in the water column, the variation of some physico-chemical parameters and the biomass of macroalgae and also to foresee the way it will possibly evolve. In fact, after many anthropogenic impacts that in the second half of the 20th century affected the lagoon, starting fromthe year 2010, the ecological status is progressively improving. Nutrients show a significant reduction both in the water column and in surface sediments, and the macrophytes are represented by species of higher ecological value while the opportunistic species such as the Ulvaceae are in strong regression

    Benthic studies in LTER sites: the use of taxonomy surrogates in the detection of long-term changes in lagoonal benthic assemblages

    Get PDF
    In benthic studies, the identification of organisms at the species level is known to be the best source for ecological and biological information even if time-consuming and expensive. However, taxonomic sufficiency (TS) has been proposed as a short-cut method for quantifying changes in biological assemblages in environmental monitoring. In this paper, we set out to determine whether and how the taxonomic complexity of a benthic assemblage influences the results of TS at two different long-term ecological research (LTER) sites in the Po delta region (north-eastern Italy). Specifically, we investigated whether TS can be used to detect natural and human-driven patterns of variation in benthic assemblages from lagoonal soft bottoms. The first benthic dataset was collected from 1996 to 2015 in a “choked” lagoon, the Valli di Comacchio, a lagoon characterised by long water residence times and heavy eutrophication, while the second was collected from 2004 to 2010 in a “leaky” lagoon, the Sacca di Goro, a coastal area with human pressure limited to aquaculture. Univariate and multivariate statistical analyses were used to assess differences in the taxonomic structure of benthic assemblages and to test TS on the two different datasets. TS seemed to work from species to family level at both sites, despite a higher natural variability of environmental conditions combined with multiple anthropogenic stressors. Therefore, TS at the family level may represent effective taxonomic surrogates across a range of environmental contexts in lagoon environments. Since the structure of the community and the magnitude of changes could influence the efficiency of taxonomic surrogates and data transformations in long-term monitoring, we also suggest periodic analyses at finer taxonomic levels in order to check the efficiency of the application of taxonomic substitutes in routine monitoring programmes in lagoon systems

    Human Innate Lymphoid Cells: Their Functional and Cellular Interactions in Decidua

    Get PDF
    Innate lymphoid cells (ILC) are developmentally related cell subsets that play a major role in innate defenses against pathogens, in lymphoid organogenesis and in tissue remodeling. The best characterized ILC are natural killer (NK) cells. They are detectable in decidua in the early phases of pregnancy. During the first trimester, NK cells represent up to 50% of decidua lymphocytes. Differently from peripheral blood (PB) NK cells, decidual NK (dNK) cells are poorly cytolytic, and, instead of IFNγ, they release cytokines/chemokines that induce neo-angiogenesis, tissue remodeling, and placentation. dNK interact with resident myeloid cells and participate in the induction of regulatory T cells that play a pivotal role in maintaining an efficient fetal–maternal tolerance. dNK cells may originate from CD34+ precursor cells present in situ and/or from immature NK cells already present in endometrial tissue and/or from PB NK cells migrated to decidua. In addition to NK cells, also ILC3 are present in human decidua during the first trimester. Decidual ILC3 include both natural cytotoxic receptor (NCR)+ and NCR− cells, producing respectively IL-8/IL-22/GM-CSF and TNF/IL-17. NCR+ILC3 have been shown to establish physical and functional interactions with neutrophils that, in turn, produce factors that are crucial for pregnancy induction/maintenance and for promoting the early inflammatory phase, a fundamental process for a successful pregnancy. While NCR+ILC3 display a stable phenotype, most of NCR−ILC3 may acquire phenotypic and functional features of NCR+ILC3. In conclusion, both NK cells and ILC3 are present in human decidua and may establish functional interactions with immune and myeloid cells playing an important role both in innate defenses and in tissue building/remodeling/placentation during the early pregnancy. It is conceivable that altered numbers or function of these cells may play a role in pregnancy failure

    Trends of Nitrogen and Phosphorus in Surface Sediments of the Lagoons of the Northern Adriatic Sea

    Get PDF
    The analysis of nutrient concentrations in surface sediments is a reliable tool for assessing the trophic status of a water body. Nitrogen and phosphorus concentrations are strongly related to the sediment characteristics but are mainly driven by anthropogenic impacts. The results of the determination of total nitrogen and total inorganic and organic phosphorus in surface sediments of the lagoons and ponds of the northwestern Adriatic Sea (Marano-Grado, Venice, Po Delta, Comacchio Valleys, Pialassa della Baiona) show the merit of this approach. Indeed, when previous data are available, the ratio between the actual and background values can provide useful information on the trophic changes that have occurred in the most recent times, and the results can also explain the conditions present in less studied environments. In this context, numerous studies performed in the Venice lagoon since the second half of the 20th century during different environmental scenarios provide mean concentration ranges and propose the main causes of changes. The results of single datasets available for the other lagoons fall into scenarios that occurred in the Venice lagoon. At present, the most eutrophic basins are Pialassa della Baiona, the Po Delta lagoons and ponds and the Comacchio valleys due to industrial effluents, fish farming and clam harvesting, respectively, whereas the Venice lagoon is now experiencing environmental recovery

    Hazardous effects of silver nanoparticles for primary producers in transitional water systems: The case of the seaweed Ulva rigida C. Agardh

    Get PDF
    Abstract The acute toxicity of citrate capped silver nanoparticles (AgNP) and silver nitrate was evaluated on the marine macroalga Ulva rigida C. Agardh (1823). Silver bioaccumulation, ultrastructural chloroplast damages verified by TEM microscopy, inhibition of primary production, neutral lipid production and oxidative stress were observed after 24 h of exposure to AgNP. The toxic effects of silver nitrate in artificial seawater started from a concentration of 0.05 ppm and was more toxic than AgNP that produced effects from a concentration of 0.1 ppm. However only AgNP induced lipid peroxidation in U. rigida. The addition of natural organic and inorganic ligands, represented by transparent exopolymer particles (TEP) and clay, drastically reduced AgNP acute toxicity in a ratio AgNP:ligand of 1:100 and 1:200, respectively. The findings suggest a marked toxicity of Ag on marine macroalgae which however should be mitigated by the high natural ligand concentrations of the transitional environments
    corecore