22 research outputs found

    Bacillus subtilis Inhibits Viral Hemorrhagic Septicemia Virus Infection in Olive Flounder (Paralichthys olivaceus) Intestinal Epithelial Cells

    Get PDF
    Viral hemorrhagic septicemia virus (VHSV) is a highly pathogenic virus that infects a wide range of host fish species causing high economic losses in aquaculture. Epithelial cells in mucosal organs are target sites for VHSV entry into fish. To protect fish against VHSV infection, there is a need to develop antiviral compounds able to prevent establishment of infection at portals of virus entry into fish. Bacillus subtilis is a probiotic with excellent antiviral properties, of which one of its secretions, surfactin, has been shown to inhibit viral infections in mammals. Herein, we demonstrate its ability to prevent VHSV infection in olive flounder (Paralichthys olivaceus) intestinal epithelial cells (IECs) and infection in internal organs. Our findings show inhibition of VHSV infection in IECs by B. subtilis and surfactin. In addition, our findings showed inhibition of VHSV in Epithelioma Papulosum Cyprini (EPC) cells inoculated with intestinal homogenates from the fish pretreated with B. subtilis by oral exposure, while the untreated fish had cytopathic effects (CPE) caused by VHSV infection in the intestines at 48 h after the VHSV challenge. At 96 h post-challenge, samples from the untreated fish had CPE from head kidney and spleen homogenates and no CPE were observed in the intestinal homogenates, while the B. subtilis-pretreated fish had no CPE in all organs. These findings demonstrate that inhibition of VHSV infection at portals of virus entry in the intestines culminated in prevention of infection in internal organs. In summary, our results show that B. subtilis has the potential to prevent VHSV infection in fish and that its use as a probiotic in aquaculture has the potential to serve as an antiviral therapeutic agent against different viral infections.publishedVersio

    Insight from Molecular, Pathological, and Immunohistochemical Studies on Cellular and Humoral Mechanisms Responsible for Vaccine-Induced Protection of Rainbow Trout against <em>Yersinia ruckeri</em>

    Get PDF
    The immunological mechanisms associated with protection of vaccinated rainbow trout, Oncorhynchus mykiss, against enteric redmouth disease (ERM), caused by Yersinia ruckeri, were previously elucidated by the use of gene expression methodology and immunochemical methods. That approach pointed indirectly to both humoral and cellular elements being involved in protection. The present study correlates the level of protection in rainbow trout to cellular reactions in spleen and head kidney and visualizes the processes by applying histopathological, immunohistochemical, and in situ hybridization techniques. It was shown that these cellular reactions, which were more prominent in spleen than in head kidney, were associated with the expression of immune-related genes, suggesting a Th2-like response. Y. ruckeri, as shown by in situ hybridization (ISH), was eliminated within a few days in vaccinated fish, whereas nonprotected fish still harbored bacteria for a week after infection. Vaccinated fish reestablished normal organ structure within a few days, whereas nonprotected fish showed abnormalities up to 1 month postinfection. Protection in the early phase of infection was mainly associated with the expression of genes encoding innate factors (complement factors, lysozyme, and acute phase proteins), but in the later phase of infection, increased expression of adaptive immune genes dominated. The histological approach used has shown that the cellular changes correlated with protection of vaccinated fish. They comprised transformation of resident cells into macrophage-like cells and increased occurrence of CD8α and IgM cells, suggesting these cells as main players in protection. Future studies should investigate the causality between these factors and protection

    Oral vaccination of fish- antigen preparations, uptake and immune induction

    No full text
    The oral route offers the most attractive approach of immunization of fish for a number of reasons: the ease of administration of antigens, it is less stressful than parenteral delivery and in principle, it is applicable to small and large sized fish; it also provides a procedure for oral boosting during grow-out periods in cages or ponds. There are however not many commercial vaccines available at the moment due to lack of efficacy and challenges associated with production of large quantities of antigens. These are required to stimulate an effective immune response locally and systemically, and need to be protected against degradation before they reach the sites where immune induction occurs. The hostile stomach environment is believed to be particularly important with regard to degradation of antigens in certain species. There is also a poor understanding about the requirements for proper immune induction following oral administration on one side, and the potential for induction of tolerance on the other. To what extent primary immunization via the oral route will elicit both local and systemic responses is not understood in detail. Furthermore, to what extent parenteral delivery will protect mucosal/gut surfaces and vice-versa is also not fully understood. We review the work that has been done on the subject and discuss it in light of recent advances that include mass production of antigens including the use of plant systems. Different encapsulation techniques that have been developed in the quest to protect antigens against digestive degradation, as well as to target them for appropriate immune induction are also highlighted

    Transcriptome analysis shows that IFN-I treatment and concurrent SAV3 infection enriches MHC-I antigen processing and presentation pathways in atlantic salmon-derived macrophage/dendritic cells

    Get PDF
    Type I interferons (IFNs) have been shown to play an important role in shaping adaptive immune responses in addition to their antiviral properties in immune cells. To gain insight into the impact of IFN-I-induced pathways involved in early adaptive immune responses, i.e., antigen-presenting pathways, in an Atlantic salmon-derived (Salmo salar L.) macrophage cell line (TO-cells), we used a comparative de novo transcriptome analysis where cells were treated with IFN-I or kept untreated and concurrently infected with salmonid alphavirus subtype 3 (SAV3). We found that concurrent treatment of TO-cells with IFN-I and SAV3 infection (SAV3/IFN+) significantly enriched the major histocompatibility complex class I (MHC-I) pathway unlike the non-IFN-I treated TO-cells (SAV3/IFN−) that had lower expression levels of MHC-I pathway-related genes. Genes such as the proteasomal activator (PA28) and β-2 microglobulin (β2M) were only differentially expressed in the SAV3/IFN+ cells and not in the SAV3/IFN− cells. MHC-I pathway genes like heat shock protein 90 (Hsp90), transporter of antigen associated proteins (TAPs) and tapasin had higher expression levels in the SAV3/IFN+ cells than in the SAV3/IFN− cells. There were no MHC-II pathway-related genes upregulated in SAV3/IFN+-treated cells, and cathepsin S linked to the degradation of endosomal antigens in the MHC-II pathway was downregulated in the SAV3/IFN− cells. Overall, our findings show that concurrent IFN-I treatment of TO-cells and SAV3 infection enriched gene expression linked to the MHC-I antigen presentation pathway. Data presented indicate a role of type I IFNs in strengthening antigen processing and presentation that may facilitate activation particularly of CD8+ T-cell responses following SAV3 infection, while SAV3 infection alone downplayed MHC-II pathways

    Application of Outer Membrane Protein-Based Vaccines Against Major Bacterial Fish Pathogens in India

    Get PDF
    Aquaculture is one of the fastest-growing food-producing sectors in the world. However, its growth is hampered by various disease problems due to infectious microorganisms, including Gram-negative bacteria in finfish aquaculture. Disease control in aquaculture by use of antibiotics is not recommended as it leads to antibiotic residues in the final product, selection, and spread of antibiotic resistance in the environment. Therefore, focus is on disease prevention by vaccination. All Gram-negative bacteria possess surface-associated outer membrane proteins (OMPs), some of which have long been recognized as potential vaccine candidates. OMPs are essential for maintaining the integrity and selective permeability of the bacterial membrane and play a key role in adaptive responses of bacteria such as solute and ion uptake, iron acquisition, antimicrobial resistance, serum resistance, and bile salt resistance and some adhesins have virulence attributes. Antigenic diversity among bacterial strains even within the same bacterial species has constrained vaccine developments, but OMPs that are conserved across serotypes could be used as potential candidates in vaccine development, and several studies have demonstrated their efficacy and potential as vaccine candidates. In this review, we will look into the application of OMPs for the design of vaccines based on recombinant proteins, subunit vaccines, chimeric proteins, and DNA vaccines as new-generation vaccine candidates for major bacterial pathogens of fish for sustainable aquaculture.publishedVersio

    Vaccines and Immunostimulants for finfish

    Get PDF
    Following a successful renal transplantation circulating markers of inflammation may remain elevated, and systemic inflammation is associated with worse clinical outcome in renal transplant recipients (RTRs). Vitamin D-receptor (VDR) activation is postulated to modulate inflammation and endothelial function. We aimed to explore if a synthetic vitamin D, paricalcitol, could influence systemic inflammation and immune activation in RTRs. Newly transplanted RTRs were included in an open-label randomized controlled trial on the effect of paricalcitol on top of standard care over the first post-transplant year. Fourteen pre-defined circulating biomarkers reflecting leukocyte activation, endothelial activation, fibrosis and general inflammatory burden were analyzed in 74 RTRs at 8 weeks (baseline) and 1 year post-engraftment. Mean changes in plasma biomarker concentrations were compared by t-test. The expression of genes coding for the same biomarkers were investigated in 1-year surveillance graft biopsies (n = 60). In patients treated with paricalcitol circulating osteoprotegerin levels increased by 0.19 ng/ml, compared with a 0.05 ng/ml increase in controls (p = 0.030). In graft tissue, a 21% higher median gene expression level of TNFRSF11B coding for osteoprotegerin was found in paricalcitol-treated patients compared with controls (p = 0.026). Paricalcitol treatment did not significantly affect the blood- or tissue levels of any other investigated inflammatory marker. In RTRs, paricalcitol treatment might increase both circulating and tissue levels of osteoprotegerin, a modulator of calcification, but potential anti-inflammatory treatment effects in RTRs are likely very modest

    Tilapia lake virus does not hemagglutinate avian and piscine erythrocytes and NH4Cl does not inhibit viral replication in vitro

    Get PDF
    Tilapia lake virus (TiLV) is a negative-sense single-stranded RNA (-ssRNA) icosahedral virus classified to be the only member in the family Amnoonviridae. Although TiLV segment-1 shares homology with the influenza C virus PB1 and has four conserved motifs similar to influenza A, B, and C polymerases, it is unknown whether there are other properties shared between TiLV and orthomyxovirus. In the present study, we wanted to determine whether TiLV agglutinated avian and piscine erythrocytes, and whether its replication was inhibited by lysosomotropic agents, such as ammonium chloride (NH4Cl), as seen for orthomyxoviruses. Our findings showed that influenza virus strain A/Puerto Rico/8 (PR8) was able to hemagglutinate turkey (Meleagris gallopavo), Atlantic salmon (Salmo salar L), and Nile tilapia (Oreochromis niloticus) red blood cells (RBCs), while infectious salmon anemia virus (ISAV) only agglutinated Atlantic salmon, but not turkey or tilapia, RBCs. In contrast to PR8 and ISAV, TiLV did not agglutinate turkey, Atlantic salmon, or tilapia RBCs. qRT-PCR analysis showed that 30 mM NH4Cl, a basic lysosomotropic agent, neither inhibited nor enhanced TiLV replication in E-11 cells. There was no difference in viral quantities in the infected cells with or without NH4Cl treatment during virus adsorption or at 1, 2, and 3 h post-infection. Given that hemagglutinin proteins that bind RBCs also serve as ligands that bind host cells during virus entry leading to endocytosis in orthomyxoviruses, the data presented here suggest that TiLV may use mechanisms that are different from orthomyxoviruses for entry and replication in host cells. Therefore, future studies should seek to elucidate the mechanisms used by TiLV for entry into host cells and to determine its mode of replication in infected cells
    corecore