378 research outputs found

    SUMO chain formation is required for response to replication arrest in S. pombe

    Get PDF
    SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pomb

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Prediction of postoperative hepatic insufficiency by liver stiffness measurement (FibroScan®) before curative resection of hepatocellular carcinoma: a pilot study

    Get PDF
    BACKGROUND: Liver stiffness measurement (LSM) using transient elastography (FibroScan((R))) reflects the degree of hepatic fibrosis. This prospective study investigated how well LSM predicts the development of hepatic insufficiency after curative liver resection surgery for hepatocellular carcinoma. METHODS: The study enrolled 72 consecutive patients who underwent a preoperative LSM to assess the degree of liver fibrosis followed by curative liver resection surgery for hepatocellular carcinoma between July 2006 and December 2007. The primary end point was the development of hepatic insufficiency. RESULTS: The mean age of the patients was 54.9 years. Twenty patients (27.7%) had chronic hepatitis and 52 (72.3%) had cirrhosis (44 and 8 patients showed Child-Pugh class A and B, respectively). The mean LSM was 17.1 kPa. Twelve patients (16.6%) had segmentectomy only, 16 patients (22.2%) had bisegmentectomy, and 44 patients (61.2%) had lobectomy. Nine patients (12.5%) had stage I tumor, 56 (77.7%) had stage II, and 7 (9.8%) had stage III. Univariate and subsequent multivariate analyses revealed that preoperative LSM was the only independent risk factor for predicting the development of postoperative hepatic insufficiency (cutoff, 25.6 kPa; P = 0.001; relative risk, 19.14; 95% confidence interval, 2.71-135.36). CONCLUSIONS: LSM is potentially useful to predict the development of postoperative hepatic insufficiency in patients with hepatocellular carcinoma undergoing curative liver resection surgery.ope

    A model to prioritize access to elective surgery on the basis of clinical urgency and waiting time

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prioritization of waiting lists for elective surgery represents a major issue in public systems in view of the fact that patients often suffer from consequences of long waiting times. In addition, administrative and standardized data on waiting lists are generally lacking in Italy, where no detailed national reports are available. This is true although since 2002 the National Government has defined implicit Urgency-Related Groups (URGs) associated with Maximum Time Before Treatment (MTBT), similar to the Australian classification. The aim of this paper is to propose a model to manage waiting lists and prioritize admissions to elective surgery.</p> <p>Methods</p> <p>In 2001, the Italian Ministry of Health funded the Surgical Waiting List Info System (SWALIS) project, with the aim of experimenting solutions for managing elective surgery waiting lists. The project was split into two phases. In the first project phase, ten surgical units in the largest hospital of the Liguria Region were involved in the design of a pre-admission process model. The model was embedded in a Web based software, adopting Italian URGs with minor modifications. The SWALIS pre-admission process was based on the following steps: 1) urgency assessment into URGs; 2) correspondent assignment of a pre-set MTBT; 3) real time prioritization of every referral on the list, according to urgency and waiting time. In the second project phase a prospective descriptive study was performed, when a single general surgery unit was selected as the deployment and test bed, managing all registrations from March 2004 to March 2007 (1809 ordinary and 597 day cases). From August 2005, once the SWALIS model had been modified, waiting lists were monitored and analyzed, measuring the impact of the model by a set of performance indexes (average waiting time, length of the waiting list) and Appropriate Performance Index (API).</p> <p>Results</p> <p>The SWALIS pre-admission model was used for all registrations in the test period, fully covering the case mix of the patients referred to surgery. The software produced real time data and advanced parameters, providing patients and users useful tools to manage waiting lists and to schedule hospital admissions with ease and efficiency. The model protected patients from horizontal and vertical inequities, while positive changes in API were observed in the latest period, meaning that more patients were treated within their MTBT.</p> <p>Conclusion</p> <p>The SWALIS model achieves the purpose of providing useful data to monitor waiting lists appropriately. It allows homogeneous and standardized prioritization, enhancing transparency, efficiency and equity. Due to its applicability, it might represent a pragmatic approach towards surgical waiting lists, useful in both clinical practice and strategic resource management.</p

    Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity

    Get PDF
    BACKGROUND: There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. METHODS: To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. RESULTS: We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. CONCLUSION: We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype

    Rpb1 Sumoylation in Response to UV Radiation or Transcriptional Impairment in Yeast

    Get PDF
    Covalent modifications of proteins by ubiquitin and the Small Ubiquitin-like MOdifier (SUMO) have been revealed to be involved in a plethora of cellular processes, including transcription, DNA repair and DNA damage responses. It has been well known that in response to DNA damage that blocks transcription elongation, Rpb1, the largest subunit of RNA polymerase II (Pol II), is ubiquitylated and subsequently degraded in mammalian and yeast cells. However, it is still an enigma regarding how Pol II responds to damaged DNA and conveys signal(s) for DNA damage-related cellular processes. We found that Rpb1 is also sumoylated in yeast cells upon UV radiation or impairment of transcription elongation, and this modification is independent of DNA damage checkpoint activation. Ubc9, an E2 SUMO conjugase, and Siz1, an E3 SUMO ligase, play important roles in Rpb1 sumoylation. K1487, which is located in the acidic linker region between the C-terminal domain and the globular domain of Rpb1, is the major sumoylation site. Rpb1 sumoylation is not affected by its ubiquitylation, and vice versa, indicating that the two processes do not crosstalk. Abolishment of Rpb1 sumoylation at K1487 does not affect transcription elongation or transcription coupled repair (TCR) of UV-induced DNA damage. However, deficiency in TCR enhances UV-induced Rpb1 sumoylation, presumably due to the persistence of transcription-blocking DNA lesions in the transcribed strand of a gene. Remarkably, abolishment of Rpb1 sumoylation at K1487 causes enhanced and prolonged UV-induced phosphorylation of Rad53, especially in TCR-deficient cells, suggesting that the sumoylation plays a role in restraining the DNA damage checkpoint response caused by transcription-blocking lesions. Our results demonstrate a novel covalent modification of Rpb1 in response to UV induced DNA damage or transcriptional impairment, and unravel an important link between the modification and the DNA damage checkpoint response

    Glycolate Oxidase Isozymes Are Coordinately Controlled by GLO1 and GLO4 in Rice

    Get PDF
    Glycolate oxidase (GLO) is a key enzyme in photorespiratory metabolism. Four putative GLO genes were identified in the rice genome, but how each gene member contributes to GLO activities, particularly to its isozyme profile, is not well understood. In this study, we analyzed how each gene plays a role in isozyme formation and enzymatic activities in both yeast cells and rice tissues. Five GLO isozymes were detected in rice leaves. GLO1 and GLO4 are predominately expressed in rice leaves, while GLO3 and GLO5 are mainly expressed in the root. Enzymatic assays showed that all yeast-expressed GLO members except GLO5 have enzymatic activities. Further analyses suggested that GLO1, GLO3 and GLO4 interacted with each other, but no interactions were observed for GLO5. GLO1/GLO4 co-expressed in yeast exhibited the same isozyme pattern as that from rice leaves. When either GLO1 or GLO4 was silenced, expressions of both genes were simultaneously suppressed and most of the GLO activities were lost, and consistent with this observation, little GLO isozyme protein was detected in the silenced plants. In contrast, no observable effect was detected when GLO3 was suppressed. Comparative analyses between the GLO isoforms expressed in yeast and the isozymes from rice leaves indicated that two of the five isozymes are homo-oligomers composed of either GLO1 or GLO4, and the other three are hetero-oligomers composed of both GLO1 and GLO4. Our current data suggest that GLO isozymes are coordinately controlled by GLO1 and GLO4 in rice, and the existence of GLO isozymes and GLO molecular and compositional complexities implicate potential novel roles for GLO in plants

    A Viral Ubiquitin Ligase Has Substrate Preferential SUMO Targeted Ubiquitin Ligase Activity that Counteracts Intrinsic Antiviral Defence

    Get PDF
    Intrinsic antiviral resistance represents the first line of intracellular defence against virus infection. During herpes simplex virus type-1 (HSV-1) infection this response can lead to the repression of viral gene expression but is counteracted by the viral ubiquitin ligase ICP0. Here we address the mechanisms by which ICP0 overcomes this antiviral response. We report that ICP0 induces the widespread proteasome-dependent degradation of SUMO-conjugated proteins during infection and has properties related to those of cellular SUMO-targeted ubiquitin ligases (STUbLs). Mutation of putative SUMO interaction motifs within ICP0 not only affects its ability to degrade SUMO conjugates, but also its capacity to stimulate HSV-1 lytic infection and reactivation from quiescence. We demonstrate that in the absence of this viral countermeasure the SUMO conjugation pathway plays an important role in mediating intrinsic antiviral resistance and the repression of HSV-1 infection. Using PML as a model substrate, we found that whilst ICP0 preferentially targets SUMO-modified isoforms of PML for degradation, it also induces the degradation of PML isoform I in a SUMO modification-independent manner. PML was degraded by ICP0 more rapidly than the bulk of SUMO-modified proteins in general, implying that the identity of a SUMO-modified protein, as well as the presence of SUMO modification, is involved in ICP0 targeting. We conclude that ICP0 has dual targeting mechanisms involving both SUMO- and substrate-dependent targeting specificities in order to counteract intrinsic antiviral resistance to HSV-1 infection

    Dissecting the determinants of depressive disorders outcome: an in depth analysis of two clinical cases

    Get PDF
    Clinicians face everyday the complexity of depression. Available pharmacotherapies and psychotherapies improve patients suffering in a large part of subjects, however up to half of patients do not respond to treatment. Clinicians may forecast to a good extent if a given patient will respond or not, based on a number of data and sensations that emerge from face to face assessment. Conversely, clinical predictors of non response emerging from literature are largely unsatisfactory. Here we try to fill this gap, suggesting a comprehensive assessment of patients that may overcome the limitation of standardized assessments and detecting the factors that plausibly contribute to so marked differences in depressive disorders outcome. For this aim we present and discuss two clinical cases. Mr. A was an industrial manager who came to psychiatric evaluation with a severe depressive episode. His employment was demanding and the depressive episode undermined his capacity to manage it. Based on standardized assessment, Mr. A condition appeared severe and potentially dramatic. Mrs. B was a housewife who came to psychiatric evaluation with a moderate depressive episode. Literature predictors would suggest Mrs. B state as associated with a more favourable outcome. However the clinician impression was not converging with the standardized assessment and in fact the outcome will reverse the prediction based on the initial formal standard evaluation. Although the present report is based on two clinical cases and no generalizability is possible, a more detailed analysis of personality, temperament, defense mechanisms, self esteem, intelligence and social adjustment may allow to formalize the clinical impressions used by clinicians for biologic and pharmacologic studies
    corecore