165 research outputs found

    Betulin Is a Potent Anti-Tumor Agent that Is Enhanced by Cholesterol

    Get PDF
    Abstract Betulinic Acid (BetA) and its derivatives have been extensively studied in the past for their anti-tumor effects, but relatively little is known about its precursor Betulin (BE). We found that BE induces apoptosis utilizing a similar mechanism as BetA and is prevented by cyclosporin A (CsA). BE induces cell death more rapidly as compared to BetA, but to achieve similar amounts of cell death a considerably higher concentration of BE is needed. Interestingly, we observed that cholesterol sensitized cells to BE-induced apoptosis, while there was no effect of cholesterol when combined with BetA. Despite the significantly enhanced cytotoxicity, the mode of cell death was not changed as CsA completely abrogated cell death. These results indicate that BE has potent anti-tumor activity especially in combination with cholesterol

    DNA methylation transcriptionally regulates the putative tumor cell growth suppressor ZNF677 in non-small cell lung cancers

    Get PDF
    In our study, we investigated the role of ZNF677 in non-small cell lung cancers (NSCLC). By comparing ZNF677 expression in primary tumor (TU) and in the majority of cases also of corresponding non-malignant lung tissue (NL) samples from > 1,000 NSCLC patients, we found tumor-specific downregulation of ZNF677 expression (adjusted p-values < 0.001). We identified methylation as main mechanism for ZNF677 downregulation in NSCLC cells and we observed tumor-specific ZNF677 methylation in NSCLC patients (p < 0.0001). In the majority of TUs, ZNF677 methylation was associated with loss of ZNF677 expression. Moreover, ZNF677 overexpression in NSCLC cells was associated with reduced cell proliferation and cell migration. ZNF677 was identified to regulate expression of many genes mainly involved in growth hormone regulation and interferon signalling. Finally, patients with ZNF677 methylated TUs had a shorter overall survival compared to patients with ZNF677 not methylated TUs (p = 0.013). Overall, our results demonstrate that ZNF677 is trancriptionally regulated by methylation in NSCLCs, suggest that ZNF677 has tumor cell growth suppressing properties in NSCLCs and that ZNF677 methylation might serve as prognostic parameter in these patients

    Betulin Is a Potent Anti-Tumor Agent that Is Enhanced by Cholesterol

    Get PDF
    Betulinic Acid (BetA) and its derivatives have been extensively studied in the past for their anti-tumor effects, but relatively little is known about its precursor Betulin (BE). We found that BE induces apoptosis utilizing a similar mechanism as BetA and is prevented by cyclosporin A (CsA). BE induces cell death more rapidly as compared to BetA, but to achieve similar amounts of cell death a considerably higher concentration of BE is needed. Interestingly, we observed that cholesterol sensitized cells to BE-induced apoptosis, while there was no effect of cholesterol when combined with BetA. Despite the significantly enhanced cytotoxicity, the mode of cell death was not changed as CsA completely abrogated cell death. These results indicate that BE has potent anti-tumor activity especially in combination with cholesterol

    Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells.</p> <p>Methods</p> <p>The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth <it>in vivo </it>were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression.</p> <p>Results</p> <p>BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10.</p> <p>Conclusions</p> <p>These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.</p

    Mycobacterium tuberculosis Induces an Atypical Cell Death Mode to Escape from Infected Macrophages

    Get PDF
    BACKGROUND: Macrophage cell death following infection with Mycobacterium tuberculosis plays a central role in tuberculosis disease pathogenesis. Certain attenuated strains induce extrinsic apoptosis of infected macrophages but virulent strains of M. tuberculosis suppress this host response. We previously reported that virulent M. tuberculosis induces cell death when bacillary load exceeds approximately 20 per macrophage but the precise nature of this demise has not been defined. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the characteristics of cell death in primary murine macrophages challenged with virulent or attenuated M. tuberculosis complex strains. We report that high intracellular bacillary burden causes rapid and primarily necrotic death via lysosomal permeabilization, releasing hydrolases that promote Bax/Bak-independent mitochondrial damage and necrosis. Cell death was independent of cathepsins B or L and notable for ultrastructural evidence of damage to lipid bilayers throughout host cells with depletion of several host phospholipid species. These events require viable bacteria that can respond to intracellular cues via the PhoPR sensor kinase system but are independent of the ESX1 system. CONCLUSIONS/SIGNIFICANCE: Cell death caused by virulent M. tuberculosis is distinct from classical apoptosis, pyroptosis or pyronecrosis. Mycobacterial genes essential for cytotoxicity are regulated by the PhoPR two-component system. This atypical death mode provides a mechanism for viable bacilli to exit host macrophages for spreading infection and the eventual transition to extracellular persistence that characterizes advanced pulmonary tuberculosis

    Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied.</p> <p>Methods</p> <p>In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses.</p> <p>Results</p> <p>Under normoxic conditions, a half maximal inhibitory concentration (IC<sub>50</sub>) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions.</p> <p>Conclusion</p> <p>Our results suggest that BA is capable of improving the effects of tumor therapy in human malignant glioma cells, particularly under hypoxic conditions. Further investigations are necessary to characterize its potential as a radiosensitizer.</p

    Analysis of single nucleotide polymorphisms in the FAS and CTLA-4 genes of peripheral T-cell lymphomas

    Get PDF
    Angioimmunoblastic T-cell lymphoma (AILT) represents a subset of T-cell lymphomas but resembles an autoimmune disease in many of its clinical aspects. Despite the phenotype of effector T-cells and high expression of FAS and CTLA-4 receptor molecules, tumor cells fail to undergo apoptosis. We investigated single nucleotide polymorphisms (SNPs) of the FAS and CTLA-4 genes in 94 peripheral T-cell lymphomas. Although allelic frequencies of some FAS SNPs were enriched in AILT cases, none of these occurred at a different frequency compared to healthy individuals. Therefore, SNPs in these genes are not associated with the apoptotic defect and autoimmune phenomena in AILT

    Role of plants in anticancer drug discovery

    Get PDF
    Cancer is one of the major causes of death and the number of new cases, as well as the number of individuals living with cancer, is expanding continuously. Worldwide the alarming rise in mortality rate due to cancer has fuelled the pursuit for effective anticancer agents to combat this disease. Finding novel and efficient compounds of natural origin has been a major point of concern for research in the pharmaceutical sciences. Plants have been seen to possess the potential to be excellent lead structures and to serve as a basis of promising therapeutic agents for cancer treatment. Many successful anti-cancer drugs currently in use or their analogues are plant derived and many more are under clinical trials. This review aims to highlight the invaluable role that plants have played, and continue to play, in the discovery of anticancer agents.We acknowledge the University of Pretoria for Postdoctoral fellowship to J.K. and B.A.M.http://www.elsevier.com/locate/phytolhb2017ChemistryGenetic
    corecore