25 research outputs found

    Evaluating the effectiveness and cost-effectiveness of Dementia Care Mappingâ„¢ to enable person-centred care for people with dementia and their carers (DCM-EPIC) in care homes: study protocol for a randomised controlled trial

    Get PDF
    Background Up to 90 % of people living with dementia in care homes experience one or more behaviours that staff may describe as challenging to support (BSC). Of these agitation is the most common and difficult to manage. The presence of agitation is associated with fewer visits from relatives, poorer quality of life and social isolation. It is recommended that agitation is treated through psychosocial interventions. Dementia Care Mappingâ„¢ (DCMâ„¢) is an established, widely used observational tool and practice development cycle, for ensuring a systematic approach to providing person-centred care. There is a body of practice-based literature and experience to suggests that DCMâ„¢ is potentially effective but limited robust evidence for its effectiveness, and no examination of its cost-effectiveness, as a UK health care intervention. Therefore, a definitive randomised controlled trial (RCT) of DCMâ„¢ in the UK is urgently needed. Methods/design A pragmatic, multi-centre, cluster-randomised controlled trial of Dementia Care Mapping (DCMâ„¢) plus Usual Care (UC) versus UC alone, where UC is the normal care delivered within the care home following a minimum level of dementia awareness training. The trial will take place in residential, nursing and dementia-specialist care homes across West Yorkshire, Oxfordshire and London, with residents with dementia. A random sample of 50 care homes will be selected within which a minimum of 750 residents will be registered. Care homes will be randomised in an allocation ratio of 3:2 to receive either intervention or control. Outcome measures will be obtained at 6 and 16 months following randomisation. The primary outcome is agitation as measured by the Cohen-Mansfield Agitation Inventory, at 16 months post randomisation. Key secondary outcomes are other BSC and quality of life. There will be an integral cost-effectiveness analysis and a process evaluation. Discussion The protocol was refined following a pilot of trial procedures. Changes include replacement of a questionnaire, whose wording caused some residents distress, to an adapted version specifically designed for use in care homes, a change to the randomisation stratification factors, adaption in how the staff measures are collected to encourage greater compliance, and additional reminders to intervention homes of when mapping cycles are due, via text message. Trial registration Current Controlled Trials ISRCTN82288852. Registered on 16 January 2014. Full protocol version and date: v7.1: 18 December 2015

    A novel binding site for the human insulin-like growth factor-II (IGF-II)/mannose 6-phosphate receptor on IGF-II

    No full text
    The mammalian insulin-like growth factor (IGF)-II/cation-independent mannose 6-phosphate receptor (IGF2R) binds IGF-II with high affinity. By targeting IGF-II to lysosomal degradation, it plays a role in the maintenance of correct IGF-II levels in the circulation and in target tissues. Loss of IGF2R function is associated with tumor progression; therefore, the IGF2R is often referred to as a tumor suppressor. The interaction between IGF2R and IGF-II involves domains 11 and 13 of the 15 extracellular domains of the receptor. Recently, a hydrophobic binding region was identified on domain 11 of the IGF2R. In contrast, relatively little is known about the residues of IGF-II that are involved in IGF2R binding and the determinants of IGF2R specificity for IGF-II over the structurally related IGF-I. Using a series of novel IGF-II analogues and surface plasmon resonance assays, this study revealed a novel binding surface on IGF-II critical for IGF2R binding. The hydrophobic residues Phe19 and Leu53 are critical for IGF2R binding, as are residues Thr16 and Asp52. Furthermore, Thr16 was identified as playing a major role in determining why IGF-II, but not IGF-I, binds with high affinity to the IGF2R.Carlie Delaine, Clair L. Alvino, Kerrie A. McNeil, Terrance D. Mulhern, Lisbeth Gauguin, Pierre De Meyts, E. Yvonne Jones, James Brown, John C. Wallace, and Briony E. Forbe
    corecore