8,328 research outputs found

    Universality of Single Spin Asymmetries in Hard Processes

    Get PDF
    We discuss the use of time reversal symmetry in the classification of parton correlators. Specifically, we consider the role of (small) intrinsic transverse momenta in these correlators and the determination of the proper color gauge link. The transverse momentum weighted correlators in hard processes can be expressed as a product of universal gluonic pole matrix elements and gluonic pole cross sections.Comment: Contributed paper at DIS2006, 4 page

    Single spin asymmetries in hadron-hadron collisions

    Full text link
    We study weighted azimuthal single spin asymmetries in hadron-hadron scattering using the diagrammatic approach at leading order and assuming factorization. The effects of the intrinsic transverse momenta of the partons are taken into account. We show that the way in which TT-odd functions, such as the Sivers function, appear in these processes does not merely involve a sign flip when compared with semi-inclusive deep inelastic scattering, such as in the case of the Drell-Yan process. Expressions for the weighted scattering cross sections in terms of distribution and fragmentation functions folded with hard cross sections are obtained by introducing modified hard cross sections, referred to as gluonic pole cross sections.Comment: 22 pages, 4 figures; minor text modifications and some additional reference

    Single-Transverse Spin Asymmetry in Dijet Correlations at Hadron Colliders

    Get PDF
    We present a phenomenological study of the single-transverse spin asymmetry in azimuthal correlations of two jets produced nearly "back-to-back" in pp collisions at RHIC. We properly take into account the initial- and final-state interactions of partons that can generate this asymmetry in QCD hard-scattering. Using distribution functions fitted to the existing single-spin data, we make predictions for various weighted single-spin asymmetries in dijet correlations that are now readily testable at RHIC.Comment: 14 pages, 2 figure

    TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions

    Get PDF
    Transverse-momentum-dependent distributions (TMDs) are central in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library, TMDlib, of fits and parameterisations for transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.Comment: version 2, referring to TMDlib 1.0.2 - comments and references adde

    Sivers and Boer-Mulders functions in Light-Cone Quark Models

    Get PDF
    Results for the naive-time-reversal-odd quark distributions in a light-cone quark model are presented. The final-state interaction effects are generated via single-gluon exchange mechanism. The formalism of light-cone wave functions is used to derive general expressions in terms of overlap of wave-function amplitudes describing the different orbital angular momentum components of the nucleon. In particular, the model predictions show a dominant contribution from S- and P-wave interference in the Sivers function and a significant contribution also from the interference of P and D waves in the Boer-Mulders function. The favourable comparison with existing phenomenological parametrizations motivates further applications to describe azimuthal asymmetries in hadronic reactions.Comment: references and explanations added; version to appear in Phys. Rev.

    Beam Single-Spin Asymmetry in Semi-Inclusive Deep Inelastic Scattering

    Full text link
    We calculate, in a model, the beam spin asymmetry in semi-inclusive jet production in deep inelastic scattering. This twist-3, TT-odd observable is non-zero due to final state strong interactions. With reasonable choices for the parameters, one finds an asymmetry of several percent, about the size seen experimentally. We present the result both as an explicit asymmetry calculation and as a model calculation of the new transverse-momentum dependent distribution function gg^\perp.Comment: 10 pages, 6 figures; minor changes made in the discussion; version accepted for publicatio

    The Construction of Gauge-Links in Arbitrary Hard Processes

    Full text link
    Transverse momentum dependent parton distribution and fragmentation functions are described by hadronic matrix elements of bilocal products of field operators off the light-cone. These bilocal products contain gauge-links, as required by gauge-invariance. The gauge-links are path-ordered exponentials connecting the field operators along a certain integration path. This integration path is process-dependent, depending specifically on the short-distance partonic subprocess. In this paper we present the technical details needed in the calculation of the gauge-links and a calculational scheme is provided to obtain the gauge-invariant distribution and fragmentation correlators corresponding to a given partonic subprocess

    Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks

    Get PDF
    We investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. Dust mass and mass accretion rate in Chamaeleon I are correlated with a slope close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit Mdust-Mstar and Macc-Mstar relations is uncorrelated. Disks with a constant alpha viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass, but over-predict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. 1) The observed scatter in Mdust and Macc is not primoridal, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large time scales affects the mass accretion rates. 2) The observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I due to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, either through direct observations of the gas or spatially resolved multi-wavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.Comment: See also the paper by Lodato et a

    An ALMA Survey of faint disks in the Chamaeleon I star-forming region: Why are some Class II disks so faint?

    Full text link
    ALMA surveys of nearby star-forming regions have shown that the dust mass in the disk is correlated with the stellar mass, but with a large scatter. This scatter could indicate either different evolutionary paths of disks or different initial conditions within a single cluster. We present ALMA Cycle 3 follow-up observations for 14 Class II disks that were low S/N detections or non-detections in our Cycle 2 survey of the 2\sim 2 Myr-old Chamaeleon I star-forming region. With 5 times better sensitivity, we detect millimeter dust continuum emission from six more sources and increase the detection rate to 94\% (51/54) for Chamaeleon I disks around stars earlier than M3. The stellar-disk mass scaling relation reported in \citet{pascucci2016} is confirmed with these updated measurements. Faint outliers in the FmmF_{mm}--MM_* plane include three non-detections (CHXR71, CHXR30A, and T54) with dust mass upper limits of 0.2 M_\oplus and three very faint disks (CHXR20, ISO91, and T51) with dust masses 0.5\sim 0.5 M_\oplus. By investigating the SED morphology, accretion property and stellar multiplicity, we suggest for the three millimeter non-detections that tidal interaction by a close companion (<<100 AU) and internal photoevaporation may play a role in hastening the overall disk evolution. The presence of a disk around only the secondary star in a binary system may explain the observed stellar SEDs and low disk masses for some systems.Comment: ApJ accepte

    The role of Cahn and Sivers effects in Deep Inelastic Scattering

    Get PDF
    The role of intrinsic \bfk_\perp in inclusive and semi-inclusive Deep Inelastic Scattering processes (phX\ell p \to \ell h X) is studied with exact kinematics within QCD parton model at leading order; the dependence of the unpolarized cross section on the azimuthal angle between the leptonic and the hadron production planes (Cahn effect) is compared with data and used to estimate the average values of kk_\perp both in quark distribution and fragmentation functions. The resulting picture is applied to the description of the weighted single spin asymmetry AUTsin(ϕπϕS)A_{UT}^{\sin(\phi_\pi - \phi_S)} recently measured by the HERMES collaboration at DESY; this allows to extract some simple models for the quark Sivers functions. These are compared with the Sivers functions which succeed in describing the data on transverse single spin asymmetries in \pup p \to \pi X processes; the two sets of functions are not inconsistent. The extracted Sivers functions give predictions for the COMPASS measurement of AUTsin(ϕπϕS)A_{UT}^{\sin(\phi_\pi - \phi_S)} in agreement with recent preliminary data, while their contribution to HERMES AULsinϕπA_{UL}^{\sin\phi_\pi} is computed and found to be small. Predictions for AUTsin(ϕKϕS)A_{UT}^{\sin(\phi_K - \phi_S)} for kaon production at HERMES are also given.Comment: 21 pages, 12 figures, revtex, version published in PRD, one figure, comments and references adde
    corecore