7,019 research outputs found

    Kinematical contributions to the transverse asymmetry in semi-inclusive DIS

    Get PDF
    We discuss the contributions of the transverse spin component of the target to the double-spin asymmetries in semi-inclusive deep inelastic scattering of longitudinally polarized electrons off longitudinally polarized protons.Comment: LaTeX, 4 pages, 4 figures, uses espcrc1.sty, talk presented at the European Workshop on the QCD Structure of the Nucleon (QCD-N'02), Ferrara, Italy, April 3-6, 200

    TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions

    Get PDF
    Transverse-momentum-dependent distributions (TMDs) are central in high-energy physics from both theoretical and phenomenological points of view. In this manual we introduce the library, TMDlib, of fits and parameterisations for transverse-momentum-dependent parton distribution functions (TMD PDFs) and fragmentation functions (TMD FFs) together with an online plotting tool, TMDplotter. We provide a description of the program components and of the different physical frameworks the user can access via the available parameterisations.Comment: version 2, referring to TMDlib 1.0.2 - comments and references adde

    Double-spin cos(phi) Asymmetry in Semi-inclusive Electroproduction

    Get PDF
    We consider the double-spin cos(phi) asymmetry for pion electroproduction in semi-inclusive deep inelastic scattering of longitudinally polarized leptons off longitudinally polarized protons. We estimate the size of the asymmetry in the approximation where all twist-3 interaction-dependent distribution and fragmentation functions are set to zero. In that approximation at HERMES kinematics a sizable negative cos(phi) double-spin asymmetry for pi+ electroproduction is predicted.Comment: LaTeX, 5 pages, 2 figures. Minor changes, figure modified. Final version to appear in Phys.Lett.

    Emergent Chiral Symmetry: Parity and Time Reversal Doubles

    Get PDF
    There are numerous examples of approximately degenerate states of opposite parity in molecular physics. Theory indicates that these doubles can occur in molecules that are reflection-asymmetric. Such parity doubles occur in nuclear physics as well, among nuclei with odd A \sim 219-229. We have also suggested elsewhere that such doubles occur in particle physics for baryons made up of `cbu' and `cbd' quarks. In this article, we discuss the theoretical foundations of these doubles in detail, demonstrating their emergence as a surprisingly subtle consequence of the Born-Oppenheimer approximation, and emphasizing their bundle-theoretic and topological underpinnings. Starting with certain ``low energy'' effective theories in which classical symmetries like parity and time reversal are anomalously broken on quantization, we show how these symmetries can be restored by judicious inclusion of ``high-energy'' degrees of freedom. This mechanism of restoring the symmetry naturally leads to the aforementioned doublet structure. A novel by-product of this mechanism is the emergence of an approximate symmetry (corresponding to the approximate degeneracy of the doubles) at low energies which is not evident in the full Hamiltonian. We also discuss the implications of this mechanism for Skyrmion physics, monopoles, anomalies and quantum gravity.Comment: 32 pages, latex. minor changes in presentation and reference

    Beam Single-Spin Asymmetry in Semi-Inclusive Deep Inelastic Scattering

    Full text link
    We calculate, in a model, the beam spin asymmetry in semi-inclusive jet production in deep inelastic scattering. This twist-3, TT-odd observable is non-zero due to final state strong interactions. With reasonable choices for the parameters, one finds an asymmetry of several percent, about the size seen experimentally. We present the result both as an explicit asymmetry calculation and as a model calculation of the new transverse-momentum dependent distribution function gg^\perp.Comment: 10 pages, 6 figures; minor changes made in the discussion; version accepted for publicatio

    The role of Cahn and Sivers effects in Deep Inelastic Scattering

    Get PDF
    The role of intrinsic \bfk_\perp in inclusive and semi-inclusive Deep Inelastic Scattering processes (phX\ell p \to \ell h X) is studied with exact kinematics within QCD parton model at leading order; the dependence of the unpolarized cross section on the azimuthal angle between the leptonic and the hadron production planes (Cahn effect) is compared with data and used to estimate the average values of kk_\perp both in quark distribution and fragmentation functions. The resulting picture is applied to the description of the weighted single spin asymmetry AUTsin(ϕπϕS)A_{UT}^{\sin(\phi_\pi - \phi_S)} recently measured by the HERMES collaboration at DESY; this allows to extract some simple models for the quark Sivers functions. These are compared with the Sivers functions which succeed in describing the data on transverse single spin asymmetries in \pup p \to \pi X processes; the two sets of functions are not inconsistent. The extracted Sivers functions give predictions for the COMPASS measurement of AUTsin(ϕπϕS)A_{UT}^{\sin(\phi_\pi - \phi_S)} in agreement with recent preliminary data, while their contribution to HERMES AULsinϕπA_{UL}^{\sin\phi_\pi} is computed and found to be small. Predictions for AUTsin(ϕKϕS)A_{UT}^{\sin(\phi_K - \phi_S)} for kaon production at HERMES are also given.Comment: 21 pages, 12 figures, revtex, version published in PRD, one figure, comments and references adde

    Bounds on transverse momentum dependent distribution and fragmentation functions

    Get PDF
    We give bounds on the distribution and fragmentation functions that appear at leading order in deep inelastic 1-particle inclusive leptoproduction or in Drell-Yan processes. These bounds simply follow from positivity of the defining matrix elements and are an important guidance in estimating the magnitude of the azimuthal and spin asymmetries in these processes.Comment: 5 pages, Revtex, 3 Postscript figures, version with minor changes, to be published in Physical Review Letter

    Estimate of the Collins fragmentation function in a chiral invariant approach

    Get PDF
    We predict the features of the Collins function, which describes the fragmentation of a transversely polarized quark into an unpolarized hadron, by modeling the fragmentation process at a low energy scale. We use the chiral invariant approach of Manohar and Georgi, where constituent quarks and Goldstone bosons are considered as effective degrees of freedom in the non-perturbative regime of QCD. To test the approach we calculate the unpolarized fragmentation function and the transverse momentum distribution of a produced hadron, both of which are described reasonably well. In the case of semi-inclusive deep-inelastic scattering, our estimate of the Collins function in connection with the transversity distribution gives rise to a transverse single spin asymmetry of the order of 10%, supporting the idea of measuring the transversity distribution of the nucleon in this way. In the case of e+ e- annihilation into two hadrons, our model predicts a Collins azimuthal asymmetry of about 5%.Comment: 12 pages, 15 figures. Figs. 11-14 changed, minor changes in discussion, few typos fixed and some references added. Final version to appear in PR

    Dihyperon in Chiral Colour Dielectric Model

    Full text link
    The mass of dihyperon with spin, parity Jπ=0+J^{\pi}=0^{+} and isospin I=0I = 0 is calculated in the framework of Chiral colour dielectric model. The wave function of the dihyperon is expressed as a product of two colour-singlet baryon clusters. Thus the quark wave functions within the cluster are antisymmetric. Appropriate operators are then used to antisymmetrize inter-cluster quark wave functions. The radial part of the quark wavefunctions are obtained by solving the the quark and dielectric field equations of motion obtained in the Colour dielectric model. The mass of the dihyperon is computed by including the colour magnetic energy as well as the energy due to meson interaction. The recoil correction to the dihyperon mass is incorporated by Peierls-Yoccoz technique. We find that the mass of the dihyperon is smaller than the ΛΛ\Lambda-\Lambda threshold by over 100 MeV. The implications of our results on the present day relativistic heavy ion experiments is discussed.Comment: LaTeX, 13 page

    Weak gauge principle and electric charge quantization

    Full text link
    Starting from a weak gauge principle we give a new and critical revision of the argument leading to charge quantization on arbitrary spacetimes. The main differences of our approach with respect to previous works appear on spacetimes with non trivial torsion elements on its second integral cohomology group. We show that in these spacetimes there can be topologically non-trivial configurations of charged fields which do not imply charge quantization. However, the existence of a non-exact electromagnetic field always implies the quantization of charges. Another consequence of the theory for spacetimes with torsion is the fact that it gives rise to two natural quantization units that could be identified with the electric quantization unit (realized inside the quarks) and with the electron charge. In this framework the color charge can have a topological origin, with the number of colors being related to the order of the torsion subgroup. Finally, we discuss the possibility that the quantization of charge may be due to a weak non-exact component of the electromagnetic field extended over cosmological scales.Comment: Latex2e, 24 pages, no figure
    corecore