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Estimate of the Collins fragmentation function in a chiral invariant approach
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We predict the features of the Collins function, which describes the fragmentation of a transversely polarized
quark into an unpolarized hadron, by modeling the fragmentation into pions at a low energy scale. We use the
chiral invariant approach of Manohar and Georgi, where constituent quarks and Goldstone bosons are consid-
ered as effective degrees of freedom in the nonperturbative regime of QCD. To test the approach we calculate
the unpolarized fragmentation function and the transverse momentum distribution of a produced hadron, both
of which are described reasonably well. In the case of semi-inclusive deep-inelastic scattering, our estimate of
the Collins function in connection with the transversity distribution gives rise to a transverse single spin
asymmetry of the order of 10%, supporting the idea of measuring the transversity distribution of the nucleon
in this way. In the case ofe1e2 annihilation into two hadrons, our model predicts a Collins azimuthal
asymmetry of about 5%.
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I. INTRODUCTION

The influence of transverse spin and transverse mom
tum on fragmentation processes is at present a largely u
plored subject. The Collins fragmentation function@1#, cor-
relating the transverse spin of the fragmenting quark to
transverse momentum of the produced hadron, could giv
the first chance to study this effect. Moreover, being ch
odd, the Collins function can be connected with the transv
sity distribution function, which is chiral odd as well, an
thus can allow the measurement of this otherwise elus
property of the nucleon, which carries valuable informati
about the dynamics of confined quarks. In addition to be
chiral odd, the Collins function is also time-reversal oddT
odd!.

In spite of the apparent difficulty in modelingT-odd ef-
fects, in a recent paper@2# we have shown that a nonvanis
ing Collins function can be obtained through a consist
one-loop calculation, in a description where massive c
stituent quarks and pions are the only effective degree
freedom and interact via a simple pseudoscalar coupling

In our previous work@2# little care was devoted to th
phenomenology of the Collins function. In contrast, our
terest here lies in obtaining a reasonable estimate of
function and the observable effects induced by it. At pres
only one attempt to theoretically estimate the Collins fun
tion for pions exists@3#, and little phenomenological infor
mation is available from experiments. The HERMES C
laboration reported the first measurements of single s
asymmetries in semi-inclusive deep inelastic scattering~DIS!
@4,5#, giving an indication of a possibly nonzero Collin
function. The Collins function has also been invoked to e
plain large azimuthal asymmetries inpp↑→pX @6,7#. In this
case, however, the extraction of the function is plagued
large uncertainties, due to the possible presence of hadr
effects in both the initial and final states, and hence does
allow any conclusive statement yet. Recently, a phenome
logical estimate of the Collins function has been propo
@8#, combining results from the DELPHI, SMC and HER
0556-2821/2002/65~9!/094021~12!/$20.00 65 0940
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MES experiments. However, in spite of all the efforts to p
down the Collins function, the knowledge we have at pres
is still insufficient.

In this work we calculate the Collins function for pions
a chiral invariant approach at a low energy scale. We use
model of Manohar and Georgi@9#, which incorporates chira
symmetry and its spontaneous breaking, two important
pects of QCD at low energies. The spontaneous breakin
chiral symmetry leads to the existence of~almost massless!
Goldstone bosons, which are included as effective degree
freedom in the model. Quarks appear as further degree
freedom as well. However, in contrast with the curre
quarks of the QCD Lagrangian, the model uses massive c
stituent quarks—a concept that has been proven very
cessful in many phenomenological models at hadro
scales. With the exception of Ref.@10#, the implications of a
chiral invariant interaction for fragmentation functions in
Goldstone bosons at low energy scales remain essent
unexplored. To investigate the Collins function for vect
mesons like ther @11# is beyond the reach of the approac

Although the applicability of the Manohar-Georgi mod
is restricted to energies below the scale of chiral symme
breakingLx'1 GeV, this is sufficient to calculate soft ob
jects. In this kinematical regime, the chiral power counti
allows setting up a consistent perturbation theory@12#. The
relevant expansion parameter is given byl /Lx , wherel is a
generic external momentum of a particle participating in
fragmentation. To guarantee the convergence of the pe
bation theory, we restrict the maximum virtualitym2 of the
decaying quark to a soft value. We mostly consider the c
m251 GeV2.

The outline of the paper is as follows. We first give th
details of our model and present the analytical results of
calculation. Next, we discuss our results and compare th
with known observables, indicating the choice of the para
eters of our model. Then, we present the features of
prediction for the Collins function and its moments. Final
using the outcome of our model, we estimate the lead
order asymmetries containing the Collins function in sem
©2002 The American Physical Society21-1
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inclusive DIS and ine1e2 annihilation into two hadrons.

II. CALCULATION OF THE COLLINS FUNCTION

Considering the fragmentation process of a quark int
pion, q* (k)→p(p)X, we use the expressions of the unp
larized fragmentation functionD1 and the Collins function
H1

' in terms of light-cone correlators, depending on the lo
gitudinal momentum fractionz of the pion and the transvers
momentumkT of the quark. The definitions read1 @13,14#

D1~z,z2kT
2!5

1

4zE dk1Tr@D~k,p!g2#uk25p2/z , ~1!

eT
i j kT j

mp
H1

'~z,z2kT
2!5

1

4zE dk1Tr@D~k,p!is i 2g5#uk25p2/z ,

~2!

with mp denoting the pion mass andeT
i j [e i j 21 @we specify

the plus and minus light-cone components of a gen
4-vectoram according toa6[(a06a3)/A2#. The correlation
function D(k,p) in Eqs.~1!, ~2!, omitting gauge links, takes
the form

D~k,p!5(
X

E d4j

~2p!4
e1 ik•j^0uc~j!up,X&

3^p,Xuc̄~0!u0&. ~3!

We now use the chiral invariant model of Manohar a
Georgi@9# to calculate the matrix elements in the correlati
function. Neglecting the part that describes free Goldst
bosons, the Lagrangian of the model reads

L5c̄~ i ]”1V” 2m1gAA” g5!c. ~4!

In Eq. ~4! the pion field enters through the vector and ax
vector combinations

Vm5
i

2
@u†,]mu#, Am5

i

2
$u†,]mu%, ~5!

with u5exp(itW•pW /2Fp), where thet i are the generators o
the SU~2! flavor group andFp593 MeV represents the pio
decay constant. In absence of resonances, the pion d
constant determines the scale of chiral symmetry break
via Lx54pFp . The quark massm and the axial coupling
constantgA are free parameters of the model that are
constrained by chiral symmetry. The values of these par
eters will be specified in Sec. III. Although we limit ou
selves here to the SU~2! flavor sector of the model, the ex
tension to strange quarks is straightforward, allowing
particular the calculation of kaon fragmentation function
For convenience we write down explicitly those terms of t
interaction part of the Lagrangian~4! that are relevant for ou

1Note that this definition ofH1
' slightly differs from the original

one given by Collins@1#.
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calculation. To be specific we need both the interaction o
single pion with a quark and the two-pion contact intera
tion, which can easily be obtained by expanding the non
ear representationu in terms of the pion field:

Lpqq52
gA

2Fp
c̄gmg5tW•]mpW c, ~6!

Lppqq52
1

4Fp
2
c̄gmtW•~pW 3]mpW !c. ~7!

Performing the numerical calculation of the Collins functio
it turns out that the contact interaction~7!, which is a direct
consequence of chiral symmetry, plays a dominant role.

At tree level, the fragmentation of a quark is model
through the processq* →pq, where Fig. 1 represents th
corresponding unitarity diagram. Using the Lagrangian
Eq. ~6!, the correlation function at lowest order reads

D (0)~k,p!52
gA

2

4Fp
2

1

~2p!4

~k”1m!

k22m2
g5p” ~k”2p”1m!

3p”g5

~k”1m!

k22m2
2pd„~k2p!22m2

…. ~8!

This correlation function allows us to compute the unpol
ized fragmentation functionD1 by means of Eq.~1!, leading
to

D1~z,z2kT
2!5

1

z

gA
2

4Fp
2

1

16p3

3S 124
12z

z2

m2mp
2

$kT
21m21@~12z!/z2#mp

2 %2D .

~9!

Note that the expression in Eq.~9! is only weakly dependen
on the transverse momentum of the quark. In fact,D1 is
constant as a function ofkT , if mp50 and~or! m50. Be-
cause our approach is limited to the soft regime, we w
impose an upper cutoff on thekT integration, as will be dis-
cussed in more detail in Sec. III. This in turn leads to a fin
D1(z) after integration over the transverse momentum.

FIG. 1. Lowest-order unitarity diagram describing the fragme
tation of a quark into a pion.
1-2
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The SU~2! flavor structure of our approach implies th
relations

D1
u→p0

5D1
ū→p0

5D1
d→p0

5D1
d̄→p0

5D1 , ~10!

D1
u→p1

5D1
d̄→p1

5D1
ū→p2

5D1
d→p2

52D1 ,
~11!

whereD1 is the result given in Eq.~9!. In the case of unfa-
vored fragmentation processesD1 vanishes at tree level, bu
will be nonzero as soon as one-loop corrections are includ
According to the chiral power counting, one-loop contrib
tions toD1 are suppressed by a factorl 2/Lx

2 compared to the
tree level result. The maximum momentum up to which
chiral perturbation expansion converges numerically
only be determined by an explicit calculation of the one-lo
corrections.

As in the case of a pseudoscalar quark-pion coupling@2#,
the Collins functionH1

' turns out to be zero in the Bor
approximation. To obtain a nonzero result, we have to re
to the one-loop level. In Fig. 2 the corresponding diagra
are shown, where we have displayed only those graphs
contribute to the Collins function. The explicit calculation
H1

' is similar to our previous work@2#. The relevant ingre-
dients of the calculation are the self-energy and the ve
correction diagrams. These ingredients are sketched in F
and can be expressed analytically as

2 iS~k!5
gA

2

4Fp
2 E d4l

~2p!4

ł ~k”2 ł 2m!ł

@~k2 l !22m2#@ l 22mp
2 #

,

~12!

FIG. 2. One-loop corrections to the fragmentation of a qu
into a pion contributing to the Collins function. The Hermitian co
jugate diagrams~H.c.! are not shown explicitly.

FIG. 3. One-loop self-energy, and vertex corrections.
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G1~k,p!52 i
gA

3

8Fp
3

g5E d4l

~2p!4
3

ł ~k”2p”2 ł 1m!

@~k2p2 l !22m2#

3
p” ~k”2 ł 2m!ł

@~k2 l !22m2#@ l 22mp
2 #

, ~13!

G2~k,p!52 i
gA

8Fp
3

g5E d4l

~2p!4

3
~ ł 1p” !~ ł 2k”1m!ł

@~k2 l !22m2!] @ l 22mp
2 #

, ~14!

where flavor factors have been suppressed. For later purp
we give here the most general parametrization of the fu
tions S, G1 andG2:

S~k!5Ak”1Bm, ~15!

G1~k,p!5
gA

2Fp
g5~C11D1p”1E1k”1F1p” k” !, ~16!

G2~k,p!5
gA

2Fp
g5~C21D2p”1E2k”1F2p” k” !. ~17!

The real parts of the functionsA, B, C1 , D1, etc. could be uv
divergent and require in principle a proper renormalizatio
Here, we do not need to deal with the question of renorm
ization at all, since only the imaginary parts of the loop d
grams are important when calculating the Collins functi
@2#.

Taking now flavor factors properly into account, the co
tributions to the correlation function generated by the d
grams~a!, ~b! and ~c! in Fig. 2 are given by

D (1)
(a)~k,p!523

gA
2

4Fp
2

1

~2p!4

~k”1m!

k22m2
g5p” ~k”2p”1m!

3p”g5

~k”1m!

k22m2
S~k!

~k”1m!

k22m2

32pd„~k2p!22m2
…, ~18!

D (1)
(b)~k,p!5

gA

2Fp
2

1

~2p!4

~k”1m!

k22m2
g5p” ~k”2p”1m!

3G1~k,p!
~k”1m!

k22m2
2pd„~k2p!22m2

…,

~19!

k
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D (1)
(c)~k,p!522

gA

2Fp
2

1

~2p!4

~k”1m!

k22m2
g5p” ~k”2p”1m!

3G2~k,p!
~k”1m!

k22m2
2pd„~k2p!22m2

….

~20!

The correlation functions of the Hermitian conjugate d
grams follow from the Hermiticity conditionD (1)

h.c.(k,p)
5g0D (1)

† (k,p)g0.
Summing the contributions of all diagrams and insert

the resulting correlation function in Eq.~2!, we eventually
obtain the result
ia

09402
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H1
'~z,z2kT

2!

5
gA

2

32p3Fp
2

mp

12z

1

k22m2
$23m Im~A1B!

2Im@C12mE11~k22m2!F1#

12 Im@C22mE2

1~k22m2!F2#%uk25[z/(12z)]k
T
21[m2/(12z)] 1~m

p
2 /z! . ~21!

Thus, the Collins function is entirely given by the imagina
parts of the coefficients defined in Eqs.~15!–~17!. We can
compute these imaginary parts by applying Cutkosky rule
the self-energy and vertex diagrams of Fig. 3. Explicit c
culation leads to
Im~A1B!5
gA

2

32p2Fp
2 F2mp

2 2
k22m2

2 S 12
m22mp

2

k2 D G I 1 , ~22!

Im@C12mE11~k22m2!F1#5
gA

2

32p2Fp
2

m~k22m2!S 3k21m22mp
2

2k2
I 114m2

k22m21mp
2

l~k2,m2,mp
2 !

@ I 11~k22m222mp
2 !I 2# D ,

~23!

Im@C22mE21~k22m2!F2#5
1

32p2Fp
2

m~k22m2!S 12
m22mp

2

k2 D I 1 , ~24!
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where we have introduced the so-called Ka¨llen function,
l(k2,m2,mp

2 )5@k22(m1mp)2#@k22(m2mp)2#, and the
factors

I 15E d4ld~ l 22mp
2 !d„~k2 l !22m2

…

5
p

2k2
Al~k2,m2,mp

2 !u„k22~m1mp!2
…,

~25!

I 25E d4l
d~ l 22mp

2 !d„~k2 l !22m2
…

~k2p2 l !22m2

52
p

2Al~k2,m2,mp
2 !

3 lnU11
l~k2,m2,mp

2 !

k2m22~m22mp
2 !2U

3u„k22~m1mp!2
…. ~26!

These integrals are finite and vanish below the threshold
quark-pion production, where the self-energy and vertex d
grams do not possess an imaginary part.
of
-

Thus, Eq.~21! in combination with Eqs.~22!–~26! gives
the explicit result for the Collins function in the Manoha
Georgi model to lowest possible order. Because of its chi
odd nature, the Collins function would vanish in this mod
if we set the mass of the quark to zero. The same phen
enon has been observed in the calculation of a chiral-
twist-3 fragmentation function@10#. The result in Eq.~21!
corresponds, e.g., to the fragmentationu→p0. The expres-
sions for the remaining favored transitions are obtained
analogy to Eqs.~10!,~11!. Unfavored fragmentation pro
cesses in the case of the Collins function appear only at
two-loop level.

III. ESTIMATES AND PHENOMENOLOGY

A. Unpolarized fragmentation function and the choice of
parameters

We now present our numerical estimates, where all res
for the fragmentation functions in this subsection refer to
transitionu→p1. To begin with we calculate the unpola
ized fragmentation functionD1(z), which is given by

D1~z!5pE
0

KT max
2

dKT
2 D1~z,KT

2!, ~27!

whereKW T52zkWT denotes the transverse momentum of t
outgoing hadron with respect to the quark direction. The
1-4
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per limit on theKT
2 integration is set by the cutoff on th

fragmenting quark virtuality,m2, and corresponds to

KT max
2 5z ~12z! m22z m22~12z! mp

2 . ~28!

In addition tom andgA , the cutoffm2 is the third paramete
of our approach that is not fixeda priori. However, as will be
explained below, the possible values ofm2 can be restricted
when comparing our results to experimental data. Unl
otherwise specified, we always use the values

m50.3 GeV, gA51, m251 GeV2. ~29!

At the relevant places, the dependence of our results on
sible variations of these parameters will be discussed. A
remarks concerning the choice in Eq.~29! are in order. The
value of m is a typical mass of a constituent quark. T
choice for the axial coupling can be seen as a kind of aver
number of what has been proposed in the literature. For
stance, in a simple SU~6! spin-flavor model for the proton
one findsgA'0.75 in order to obtain the correct value for th
axial charge of the nucleon@9#. On the other side, largeNc
arguments favor a value of the order of 1@15#, while, accord-
ing to a recent calculation in a relativistic point-form a
proach@16#, a gA slightly above 1 seems to be required f
describing the axial charge of the nucleon. Finally, o
choice form2 ensures that the momenta of the outgoing p
and quark, in the rest frame of the fragmenting quark, rem
below values of the order 0.5 GeV. In this region we belie
chiral perturbation theory to be applicable, meaning that
leading order result should provide a reliable estimate.

In Fig. 4 we show the result for the unpolarized fragme

tation functionD1
u→p1

. Notice that in general the fragmen
tation functions vanish outside the kinematical limits, whi
in our model are given by

zmax,min5
1

2 F S 12
m22mp

2

m2 D
6AS 12

m22mp
2

m2 D 2

24
mp

2

m2 G , ~30!

FIG. 4. Model result for the unpolarized quark fragmentati

function D1
u→p1

~solid line! and comparison with the parametriz
tion of Ref. @17# ~gray line!.
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corresponding to the situation when the upper limit of theKT
2

integration becomes equal to zero. We consider our tree l

result as a pure valence-type part ofD1
u→p1

. The sea-type
~unfavored! transition ū→p1 is strictly zero at leading or-
der. Therefore, we compare the model result to the valen

type quantity D1
u→p1

2D1
ū→p1

, where the fragmentation
functions have been taken from the parametrization
Kretzer2 @17# at a scaleQ251 GeV2. Obviously, thez de-
pendence of both curves is in nice agreement. We point
that such an agreement is nontrivial. For example, in
pseudoscalar model that we used in our previous work@2#,
D1 behaves quite differently and peaks at an intermediaz
value.

On the other hand, we underestimate the parametriza
of Ref. @17# by about a factor of 2. Some remarks are
order at this point. Although a part of the discrepancy mig
be attributed to the uncertainty in the value ofgA , the most
important point is to address the question as to what ex
we can compare our estimate with existing parametrizatio
The parametrization of@17# serves basically as input func
tion of the perturbative QCD~PQCD! evolution equations,
used to describe high-energye1e2 data, and displays the
typical logarithmic dependence on the scaleQ2. A value of
Q251 GeV2 is believed to be already beyond the limit o
applicability of PQCD calculations. On the other hand, o
approach displays, to a first approximation, a linear dep
dence on the cutoffm2. It is supposed to be valid at low
scales and it is also stretched to the limit of its applicabil
for m251 GeV2. In this context it should also be invest
gated to what extent the inclusion of one-loop correctio
which allow for the additional decay channelq* →ppq,
will increase the result forD1 at m251 GeV2. Finally, we
want to remark that to our knowledge there exists no st
one-to-one correspondence between the quark virtualitym2

and the scale used in the evolution equation of fragmenta
functions, which in semi-inclusive DIS, e.g., is typical
identified with the photon virtualityQ2. For all these rea-
sons, a smooth matching of our calculation and the par
etrization of @17# cannot necessarily be expected. Desp
these caveats, the correctz behavior displayed by our resu
for D1 suggests that the calculation can well be used as
input for evolution equations at a low scale. In the next su
section we will elaborate more on this point in connecti
with the Collins function.

The best indication of the appropriate value of the cut
m2 may be obtained when comparing our calculation to
perimental data of the average transverse momentum of
outgoing hadron with respect to the quark, which we eva
ate according to

^uKW Tu&~z!5
p

D1~z!
E

0

KT max
2

dKT
2 uKW Tu D1~z,KT

2!. ~31!

2Other parametrizations@18–20# use a starting energy scaleQ2

>2 GeV2, which is too high to allow a comparison with our re
sults.
1-5
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In Fig. 5 we show the result of this observable as a funct
of z for three different choices of the parameterm2. As a
comparison, we also show a fit~taken from Ref.@6#! to ex-
perimental data obtained by the DELPHI Collaboration@21#.
As in the case ofD1(z), the shape of our result is ver
similar to the experimental one, which we consider as
encouraging result. Form251 GeV2 our curve is about
30% below the data. Such a disagreement is not surpris
keeping in mind that at LEP energies higher order PQ
effects ~e.g. gluon bremsstrahlung, unfavored fragmen
tions, etc.! play an important role, leading in general to
broadening of theKT distribution. For experiments at lowe
energies, however, where PQCD contributions can be
glected in a first approximation, it may be possible to exha
the experimental value for̂uKW Tu&(z) with genuine soft con-
tributions as described in our model. This in turn would d
termine the appropriate value of the cutoffm2. For example,
such a method of matching our calculation with experimen
conditions could be applied at HERMES kinematics, ev
though the method is somewhat hampered sinceKT is not
directly measured in semi-inclusive DIS. In this case, o
rather observes the transverse momentum of the outg
hadron with respect to the virtual photon,Ph' , which de-
pends on bothKT and the transverse momentum of the p
tons inside the targetpT . At leading order in the hard sca
tering cross section one can in fact derive the relation

^Ph'
2 &~x,z!5z2

pE dpT
2 pT

2 f 1~x,pT
2!

f 1~x!

1

pE dKT
2 KT

2 D1~z,KT
2!

D1~z!

5z2 ^pT
2&~x!1^KT

2&~z!, ~32!

wherex represents the Bjorken variable.

FIG. 5. Model result for the average hadron transverse mom
tum for different choices of the cutoff:m250.5 GeV2 ~dotted line!,
m251 GeV2 ~solid line!, m251.5 GeV2 ~dashed line! and com-
parison with a fit to experimental results from DELPHI@21# ~gray
line!.
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B. Collins function

We now turn to the description of our model result for t
Collins function. In Fig. 6,H1

' is plotted for three different
values of the constituent quark mass,m50.2, 0.3, 0.4 GeV.
In a largez range, the function does not depend strongly
the precise value of the quark mass, if we choose it wit
reasonable limits. That is why we can confidently fixm
50.3 GeV for our numerical studies. It is very interesting
observe that the behavior of the unpolarized fragmenta
function D1 is quite distinct from that of the Collins func
tion: while the former is decreasing asz increases, the latte
is growing.

The different behavior of the two functions becomes ev
more evident when looking at their ratio, shown in Fig.
We emphasize that also from the experimental side th
exists some evidence for an increasing ratioH1

'/D1. In a
recent analysis of the longitudinal single spin asymme
measured at HERMES, Efremovet al. @8# extracted a behav
ior H1

'/D1}z for z<0.7. We consider the agreement in fin
ing a clearly rising ratioH1

'/D1 as remarkable, even thoug
in the analysis of Ref.@8# some simplifying assumption
were used in order to obtain information onH1

' from data
taken with a longitudinally polarized target. It will be ver
interesting to see if dedicated future experiments can con
such a behavior. We also mention that ratios of the Coll
function or any of its moments withD1 are almost indepen
dent of the coupling constantgA . The reason is that the
one-loop correction containing the contact interaction is o
proportional togA

2 , as D1 is, and is dominating over the
others. Furthermore, the ratioH1

'/D1 is nearly independen

n-
FIG. 6. Model result for the Collins function for different value

of the constituent quark mass:m50.2 GeV ~dotted line!, m
50.3 GeV~solid line!, m50.4 GeV~dashed line!.

FIG. 7. Model result forH1
'/D1.
1-6
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of the cutoffm2. In conclusion, the prediction shown in Fig
7 is almost independent of the choice of parameters in
approach.

At this point we would like to add some general remar
concerning thez behavior of our results. It turns out that th
shape of all the results does not vary much when chang
the parameters within reasonable limits. In particular, va
tions of gA and of the cutoffm2 only change the normaliza
tion of the curves but not their shape. In this sense our
culation of fragmentation functions has a strong predict
power. This has a direct practical consequence if one u
for instance, our result of the Collins function as input in
evolution equation: thez dependence of the input functio
can be adjusted to the shape of ourH1

' , while its normaliza-
tion can be kept free in order to account for uncertainties
the values ofgA andm2.

In Fig. 8 we plot the ratio

H1
'(1/2)~z!

D1~z!
[

p

D1~z!
E dKT

2 uKW Tu
2zmp

H1
'~z,KT

2!, ~33!

which enters the transverse single spin asymmetry to be
cussed in the following subsection. This quantity ris
roughly linearly within a largez range, leading to a similarz
behavior of the transverse spin asymmetry.H1

'(1/2)/D1 is no
longer independent of the cutoffm2, but rather the same
dependence as in the case of^uKW Tu& ~shown in Fig. 5! can be
assumed. In Fig. 8, this ratio is compared to the express

^uKW Tu&~z!

2zmp

H1
'~z!

D1~z!
5p

H1
'~z!

D1
2~z!

E dKT
2 uKW Tu

2zmp
D1~z,KT

2!.

~34!

A very close agreement between the two different curves
be observed, indicating that the model predicts a quite s
lar transverse momentum dependence of both the Co
function andD1. In the literature, this feature is sometim
assumed in phenomenological parametrizations ofH1

' .
Note, however, that in our approach deviations from t
simple behavior can be expected, ifD1 is also calculated
consistently to the one-loop order.

The Collins function has to fulfill the positivity boun
@22,23#

FIG. 8. Model result forH1
'(1/2)/D1 ~solid line! and comparison

with the product (̂uKW Tu&/2zmp) (H1
'/D1) ~dashed line!. Note that

the positivity bound requires the ratio to be smaller than 0.5.
09402
ur

g
-

l-
e
s,

n

is-
s

n

n
i-
s

s

uKW Tu
2zmp

H1
'~z,KT

2!<
1

2
D1~z,KT

2!. ~35!

Integration overKT
2 gives the simplified expression

H1
'(1/2)~z!

D1~z!
<

1

2
, ~36!

which is satisfied by our model calculation. It is clear, ho
ever, that increasing the value ofm2 will eventually result in
a violation of the positivity condition. To avoid such a vio
lation, we should calculateD1 and H1

' consistently at the
same order, i.e., the one-loop corrections toD1 should be
included. By doing so, the positivity bound will be fulfille
even at larger values ofm2, for which our numerical results
are no longer trustworthy.

From our results, we expect an increasing behavior of
azimuthal asymmetry inp↑p→p X as function ofxF , quali-
tatively similar to what has been predicted in Ref.@3# in the
context of the Lund fragmentation model. At this point, it
also interesting to discuss the comparison of our results w
the ones obtained using the so-called ‘‘Collins guess.’’
the basis of very general assumptions, Collins suggeste
possible behavior for the transverse spin asymmetry cont
ing H1

' @1#. This suggestion has been used in the literat
~see, e.g., Refs.@24–27#! to propose the following shape fo
the Collins function:

H1
'(1/2)~z!5pE dKT

2 uKW Tu
2z

MC

MC
2 1KT

2/z2
D1~z,KT

2!, ~37!

with the parameterMC ranging between 0.3 and 0.7 GeV
Using our model outcome for the unpolarized fragmentat
function, we apply Eq.~37! to estimateH1

'(1/2) , and in Fig. 9
we show how this compares to the exact result of Eq.~33!.
There is a rough qualitative agreement with the Collins
satz for the lowest value of the parameterMC , although it is
not growing fast enough compared to the exact evaluat
On the other hand, in the Manohar-Georgi model there is
agreement with the Collins ansatz for high values of the
rameter MC , which might indicate that the relation sug
gested in Eq.~37! should be handled with care.

FIG. 9. Model result forH1
'(1/2)/D1 ~solid line! and comparison

with the same ratio, whereH1
'(1/2) is calculated according to Eq

~37! with MC50.3 GeV~dashed line! and MC50.7 GeV~dotted
line!.
1-7
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Finally, we display in Fig. 10 the quantity

H1
'(1)~z!

D1~z!
[

p

D1~z!
E dKT

2
KT

2

2z2mp
2

H1
'~z,KT

2!, ~38!

because this ratio appears in the weighted asymmetries
considered below. In Fig. 10, the expression

^KT
2&~z!

2z2mp
2

H1
'~z!

D1~z!
5p

H1
'~z!

D1
2~z!

E dKT
2

KT
2

2z2mp
2

D1~z,KT
2!

~39!

is also shown for comparison. Once again, there is a rem
able agreement between the two different expressions,
firming the quite similarKT behavior ofH1

' andD1.

C. Asymmetries in semi-inclusive DIS ande¿eÀ annihilation

We turn now to estimates of possible observables cont
ing the Collins function. We will take into consideration on
particle inclusive DIS, where the Collins function appears
connection with the transversity distribution of the nucleo
and e1e2 annihilation into two hadrons belonging to tw
different jets.

In the first case, we consider the DIS cross section wit
transversely polarized target3 and the production of one pion
We denote the transverse polarization vector of the targe
SW T . The cross section is differential in six variables, f
which we choosex,y,z,uPW h'u,fh

S ,f l
S , where PW h' is the

transverse component of the pion momentum,fh
S is its azi-

muthal angle with respect to the target spin, andf l
S is the

azimuthal angle of the lepton scattering plane again w
respect to the target spin.

Orienting the spin of the target in two opposite directio
and summing the cross sections we isolate the unpolar
part @14#,

3Transverse vectors and azimuthal angles are defined as lying
plane perpendicular to the direction of the virtual photon.

FIG. 10. Model resultH1
'(1)/D1 ~solid line! and comparison

with the product (̂KT
2&/2z2mp

2 )(H1
'/D1

') ~dashed line!.
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d6sU↑1d6sU↓5
4ae.m.

2

sxy2 S 12y1
y2

2 D
3E d2pW Td2kWT d2S pW T2

PW h'

z
2kWTD

3(
a

ea
2f 1

a~x,pT
2! D1

a~z,z2kT
2!, ~40!

where the subscriptU indicates an unpolarized electro
beam, the indexa denotes quark flavors, andf 1 is the usual
unpolarized quark distribution in the nucleon. Subtracti
the cross sections we obtain the polarized part@14#,

d6sU↑2d6sU↓

52uSW Tu
4ae.m.

2

sxy2
~12y!sin~fh

S22f l
S!

3E d2pW Td2kWTd2S pW T2
PW h'

z
2kWTD

3
PW h'•kWT

uPW h'u mp
(

a
ea

2h1
a~x,pT

2!H1
' a~z,z2kT

2!.

~41!

Integration over the azimuthal angles would cause the po
ized part of the cross section to vanish. After defining t
angle f[fh

S22f l
S , we consider the sinf weighted trans-

verse spin asymmetry

^sinf&UT~x,y,z!5

E df l
S d2PW h' sinf~d6sU↑2d6sU↓!

E df l
S d2PW h'~d6sU↑1d6sU↓!

.

~42!

Inserting Eqs.~41!, ~40! into the definition of the asymmetry
results in an expression where the transverse momenta oh1

andH1
' are still entangled in a convolution integral@28#. To

resolve the convolution, it is required to assume a particu
dependence of the transversity distribution on the intrin
transverse momentum. The simplest example is

h1~x,pT
2!'h1~x!

d~pT
2!

p
, ~43!

which means supposing there is no intrinsic transverse
mentum of the partons inside the target. Under this assu
tion, the pion transverse momentum with respect to the
tual photon is entirely due to the fragmentation process,
PW h'5KW T52zkWT , and the convolution can be disentangle

n a
1-8
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^sinf&UT~x,y,z!

'uSW Tu
~1/xy2!~12y!(

a
ea

2h1
a~x!H1

'(1/2)a~z!

~1/xy2!~12y1y2/2!(
a

ea
2 f 1

a~x! D1
a~z!

, ~44!

where the approximation sign reminds us that the equalit
assumption dependent.

If we want to disentangle the convolution integral of E
~41! without making any assumption on the intrinsic tran
verse momentum distribution, we need to weight the integ
with the magnitude of the pion transverse momentum@29#.
This procedure results in the azimuthal transverse spin as
metry

K uPW h'u
mp

sinfL
UT

~x,y,z!

5

E df l
Sd2PW h'~ uPW h'u/mp! sinf~d6sU↑2d6sU↓!

E df l
Sd2PW h'~d6sU↑1d6sU↓!

5uSW Tu
~1/xy2!~12y! z(

a
ea

2 h1
a~x! H1

'(1)a~z!

~1/xy2!~12y1y2/2! (
a

ea
2 f 1

a~x! D1
a~z!

. ~45!

We achieved an assumption-free factorization of thex depen-
dent transversity distribution and thez dependent Collins
function. The measurement of this asymmetry requires
to bin the cross section according to the magnitude of
pion transverse momentum. On the other hand, this asym
try represents potentially the cleanest method to measure
transversity distribution together with the Collins functio
Moreover, it is not afflicted by complications due to Sudak
factors@30#.

We show predictions for both transverse spin asymmet
defined in Eqs.~44! and ~45!. Different calculations can be
found in the literature, e.g., in Refs.@27,31,32#. To estimate
the magnitude of the asymmetries, we need inputs for
distribution functions, in particular for the transversity dist
bution. Several model calculations of this function are av
able at present~see@33# for a comprehensive review!. We
refrain from considering many different examples and rat
restrict the analysis to two limiting situations. In the first ca
we adopt the nonrelativistic assumptionh15g1, while in the
second case we exhaust the upper bound on the transve
distribution, i.e.,h1< 1

2 ( f 11g1) @34#. We use the simple pa
rametrization ofg1 and f 1 suggested in@35#. At the moment,
more sophisticated parametrizations are available, tak
scale evolution into account also. However, all these par
etrizations are compatible with each other to the exten
our purpose here, which is to give an estimate of the as
metries for a low scale. We focus on the production ofp1,
where the contribution of down quarks is negligible, not on
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because of the presence of unfavored fragmentation fu
tions, but also because the transversity distribution for do
quarks is supposed to be much smaller than for up quar

In Fig. 11 we present the azimuthal asymmetry defined
Eq. ~44! as a function ofx, after integrating numerator an
denominator over the variablesy and z, for the two cases
described above. In Fig. 12, we present the same asymm
as a function ofz, after integrating overy andx. As already
mentioned before, our prediction is supposed to be valid
low energy scale of about 1 GeV2. Neglecting evolution
effects, it could be utilized for comparison with experimen
at a scale of a few GeV2. We assume the value of the tran
verse polarization to beuSW Tu50.75. In performing the
integrations, we apply the kinematical cuts typical of t
HERMES experiment, as described in@4#. Therefore, our
prediction is particularly significant for HERMES, which i
supposed to be the first experiment to measure this asym
try. In principle, the simultaneous study of thex andz depen-
dence of the asymmetry yields separate information on
distribution and fragmentation parts and allows one to
tract both up to a normalization factor@32#. Note, however,
that this procedure relies on the assumption of up-qu
dominance and is valid only if the asymmetry is truly facto
ized, so that thex dependence can be ascribed entirely to
distribution functions and thez dependence entirely to th
fragmentation functions. Kinematical cuts could partia
spoil this situation. We would like to stress that our calcu
tion predicts an asymmetry up to the order of 10%, wh
should be within experimental reach, and suggests the po

FIG. 11. Azimuthal transverse spin asymmetry^sinf&UT as a
function of x. Solid line: assumingh15g1. Dashed line: assuming
h15(1/2)(f 11g1). The functionsf 1 andg1 are taken from@35#.

FIG. 12. Azimuthal transverse spin asymmetry^sinf&UT as a
function of z. Solid line: assumingh15g1. Dashed line: assuming
h15

1
2 ( f 11g1). The functionsf 1 andg1 are taken from@35#.
1-9
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bility of distinguishing between different assumptions on t
transversity distribution.

Using the same procedure as before, we have estim
the asymmetry defined in Eq.~45!, containing the weighting
with uPW h'u/mp . The results are shown in Fig. 13 as a fun
tion of x and in Fig. 14 as a function ofz. The magnitude of
this asymmetry is higher than in the unweighted case, wh
is due to the fact that the weighting spuriously enhances
asymmetry by about a factor of 2.

In addition to appearing in semi-inclusive DIS in conne
tion with the transversity distribution of the nucleon, the C
lins function can be independently extracted from anot
process, that is, electron-positron annihilation into two h
rons belonging to two back-to-back jets@36,37#. We restrict
ourselves to the case ofg exchange only. In this process, on
of the two hadrons~say hadron 2! defines the scattering
plane together with the leptons and determines the direc
with respect to which the azimuthal angles must be m
sured. The cross section is differential in five variables, e
z1 ,z2 ,y,uPW h'u,f. The variablesz1 andz2 are the longitudi-
nal fractional momenta of the two hadrons. In the center
mass framey5(11cosu)/2, whereu is the angle of hadron
2 with respect to the momentum of the incoming lepto
The vectorPW h' denotes the transverse component of the m
mentum of hadron 1 andf is its azimuthal angle with re
spect to the scattering plane. For a more detailed descrip
of the kinematical variables we refer to@36,37#.

We define the azimuthal asymmetry

FIG. 13. Azimuthal spin asymmetrŷ(uPW h'u/mp) sinf&UT as a
function of x. Solid line: assumingh15g1. Dashed line: assuming
h15(1/2)(f 11g1). The functionsf 1 andg1 are taken from@35#.

FIG. 14. Azimuthal spin asymmetrŷ(uPW h'u/mp) sinf&UT as a
function of z. Solid line: assumingh15g1. Dashed line: assuming
h15(1/2)(f 11g1). The functionsf 1 andg1 are taken from@35#.
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^Ph'
2 cos 2f&e1e2~u,z1 ,z2!

5

E d2PW h'Ph'
2 cos2fd5se1e2

E d2PW h' Ph'
2 d5se1e2

5
2 sin2u

11cos2u

H1
'(1)~z1! H̄1

'(1)~z2!

@D1~z1! D̄1
(1)~z2!1D1

(1)~z1! D̄1~z2!#
,

~46!

where summations over quark flavors are understood.
weighting with a second power ofPh' in the numerator is
necessary to obtain a deconvoluted expression. We prefe
use the same weighting in the denominator as well, to av
a modification of the asymmetry just caused by the weig
ing.

In Fig. 15 we present the estimate of the asymmetry
fined above, entirely based on our model. The asymm
has been integrated overz2 andu, leaving the dependence o
z1 alone. We have extended theu integration interval all the
way to @0,p#, to obtain a conservative estimate. In fact, lim
iting the interval to@p/4,3p/4# will enhance the asymmetry
by a factor of 2, approximately. Because the Collins funct
increases with increasingz, we also get a larger asymmetr
by restricting the integration range forz2. As an illustration
of this feature, in Fig. 15 we present two results, obtain
from two different integration ranges. Our prediction is su
posed to be valid only at low energy scales and should
evolved for comparison with higher energy experiments. I
important to note that we estimate the asymmetry to be of
order of about 5%, and thus it should be very well obse
able in experiments.

IV. SUMMARY AND CONCLUSIONS

We have estimated the Collins fragmentation function
pions at a low energy scale by means of the Manohar-Ge
model. This model contains three essential features of n
perturbative QCD: massive quark degrees of freedom, ch
symmetry and its spontaneous breaking~with pions as Gold-
stone bosons!. Because of the chiral invariant interaction b
tween pions and quarks, the fragmentation process can

FIG. 15. Azimuthal asymmetrŷPh'
2 cos 2f&e1e2 for e1e2 an-

nihilation into two hadrons, integrated over the range 0.2<z2

<0.8 ~solid line!, and over the range 0.5<z2<0.8 ~dashed line!.
1-10
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ESTIMATE OF THE COLLINS FRAGMENTATION . . . PHYSICAL REVIEW D65 094021
evaluated in a perturbative expansion. The constituent qu
mass, the axial pion-quark couplinggA and the maximum
virtuality m2 of the fragmenting quark are free parameters
our approach. The quark mass andgA are constrained within
reasonable limits. To ensure the convergence of the ch
perturbation expansion,m2 cannot exceed a typical hadron
scale. We have mostly considered the valuem251 GeV2,
which guarantees that the momenta of the particles produ
in the fragmentation process stay well below the scale
chiral symmetry breaking,Lx'1 GeV. To determine the
appropriate value ofm2, the average transverse momentu
of a data set could be used. In any case, we observed
variations of the free parameters within reasonable lim
have only a minor influence on the shape of the results,
plying that our approach has a strong predictive power
the z behavior of the various functions.

We have found that the Manohar-Georgi model rep
duces reasonably well the unpolarized pion fragmenta
function and the average transverse momentum of a
duced hadron as a function ofz, supporting the idea of de
scribing the fragmentation process by a chiral invariant
proach.

Compared to the unpolarized fragmentation functio
modeling the Collins function is considerably more difficu
mainly because of its chiral-odd and time-reversal odd
ture. In our approach, the helicity flip required to generat
chiral-odd object is caused by the mass of the constitu
quark, while theT-odd behavior is produced via one-loo
corrections. The Collins function exhibits a quite distinct b
havior from the unpolarized fragmentation function. In p
ticular, the ratioH1

'/D1 is strongly increasing with increas
ing z.
et

d
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On the basis of our results, we have calculated the tra
verse single-spin asymmetry in semi-inclusive DIS where
Collins function appears in combination with the transvers
of the nucleon. This observable will be measured in the n
future at HERMES and could also be investigated at CO
PASS, JLab~upgraded! and eRHIC. For typical HERMES
kinematics the asymmetry is of the order of 10%, givi
support to the intention of extracting the nucleon transver
in this way. We believe that our estimate of the Collins fun
tion, despite its uncertainties, can be very useful for this
traction.

More information on the Collins function from the exper
mental side is urgently required. In this respect, the m
promising experiment seems to bee1e2 annihilation into
two hadrons, whereH1

' appears squared in an azimuth
cos 2f asymmetry. According to our calculation, an asymm
try of the order of 5% can be expected, which should
measurable at high luminosity accelerators, such as BAB
and BELLE. Dedicated measurements of the Collins fu
tion would be extremely important for the extraction of th
transversity distribution. Moreover, they could answer t
question whether a chiral invariant Lagrangian can be u
to model the Collins function.
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